

Rich's lesson module checklist

Last updated 9/16/2016

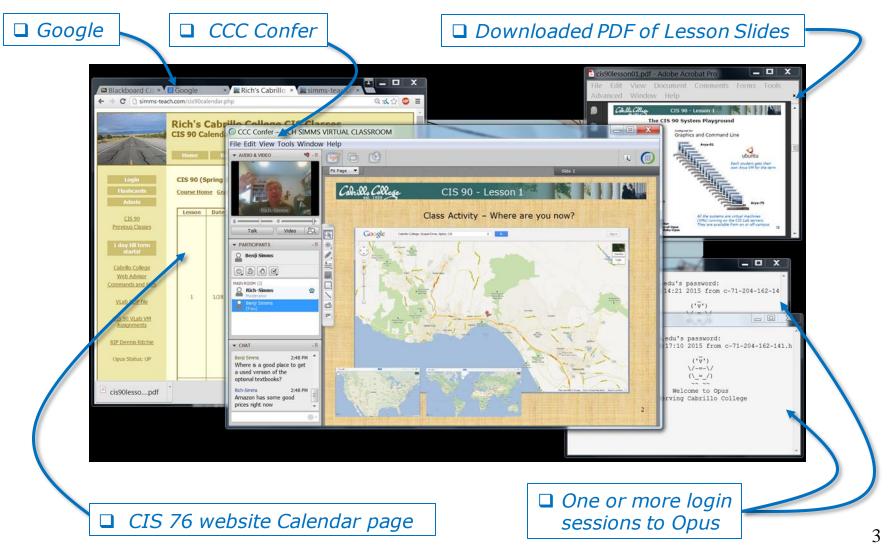
1

- □ Slides and lab posted
- □ WB converted from PowerPoint
- $\hfill\square$ Print out agenda slide and annotate page numbers
- Flash cards
- Properties
- Page numbers
- $\ \ \, \square \ \ \, 1^{st}\,minute\,\,quiz$
- □ Web Calendar summary
- Web book pages
- Commands
- □ Lab 2 posted and tested
- □ Sample Lab 2 posted
- Rosters printed
- Add codes printed
- $\hfill\square$ Backup slides, whiteboard slides, CCC info, handouts on flash drive
- □ Spare 9v battery for mic
- □ Key card for classroom door

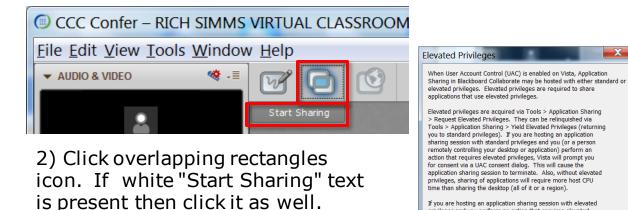
Student checklist for attending class

STATES BURNING STR	each.com/cis90calendar.php
	Rich's Cabrillo College CIS Classes
	C13 90 (Pail 2014) Coleman
<u>CIS 76</u>	Leinon Duže Clena and Linea Overview.
	Understand the file conjected work Understand the file conjected work Understand overview of computers, operating Systems and virtual mechanies Overview of UNEX/Linux mathet and architecture, Using SCPH for compression between logins Using SCPH for compression late
Web Stores	Methodiation Presentation slides (<u>download</u>) 3/2
	Separative fail
	(1) 11 − 1 → Student Survey (1) 1 − 1 → Student Survey (1) 1 − 1 → Student Survey (1) → Student Survey (1) → Student Survey (1) → Student Survey (1) → Student Survey

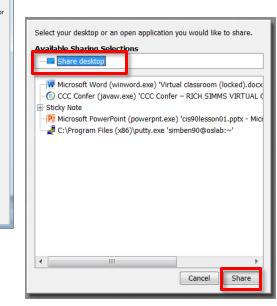
the state of the second st


- 1. Browse to: http://simms-teach.com
- 2. Click the <u>CIS 76</u> link.
- 3. Click the <u>Calendar</u> link.
- 4. Locate today's lesson.
- 5. Find the **Presentation slides** for the lesson and <u>download</u> for easier viewing.
- 6. Click the Enter virtual classroom link to join CCC Confer.
- 7. Log into Opus with Putty or ssh command.

Note: Blackboard Collaborate Launcher only needs to be installed once. It has already been downloaded and installed on the classroom PC's.


Student checklist for suggested screen layout

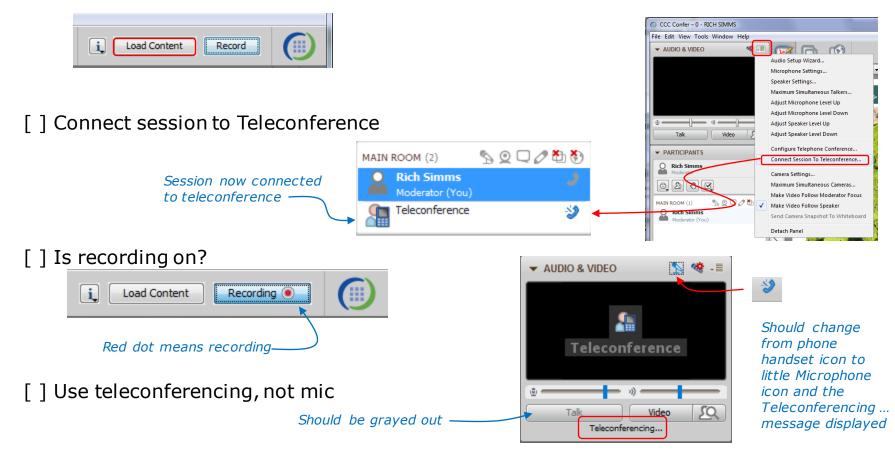
Student checklist for sharing desktop with classmates


1) Instructor gives you sharing privileges.

If you are hosting an application sharing session with elevated privlieges and you perform an action that requires elevated privlieges, Vista will not prompt you for consent. Instead, the action automatically will be either denied (if you are logged on as a standard user) or allowed (if you are logged on as an administrator).

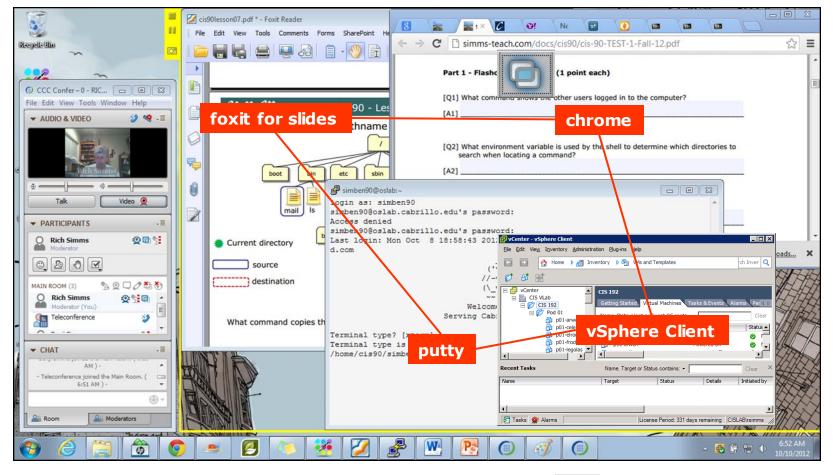
3) Click OK button.

4) Select "Share desktop" and click Share button.



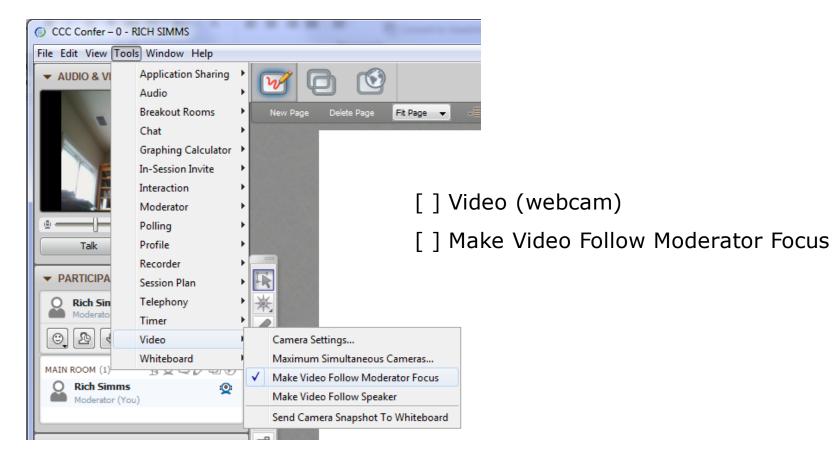
Rich's CCC Confer checklist - setup

[] Preload White Board

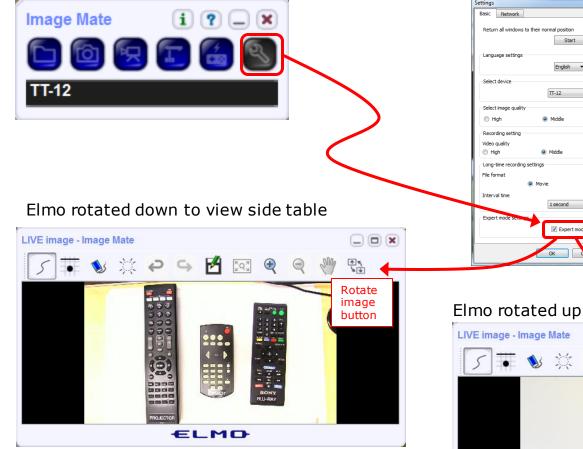


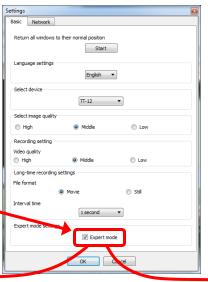
Rich's CCC Confer checklist - screen layout

[] layout and share apps



Rich's CCC Confer checklist - webcam setup





Rich's CCC Confer checklist - Elmo

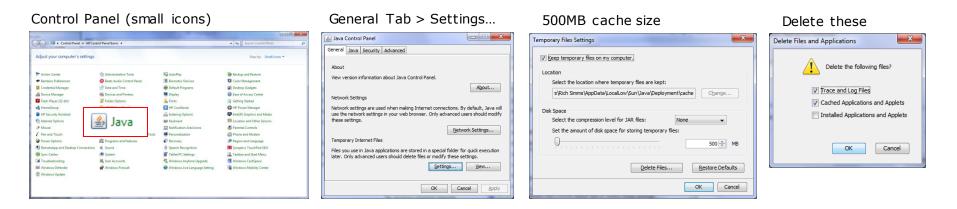
Run and share the Image Mate program just as you would any other app with CCC Confer

The "rotate image" button is necessary *if you use both the* side table and the white board.

CCC (IIII) Confer

x

Quite interesting that they consider you to be an "expert" in order to use this button!



Rich's CCC Confer checklist - universal fixes

Universal Fix for CCC Confer:

- 1) Shrink (500 MB) and delete Java cache
- 2) Uninstall and reinstall latest Java runtime
- 3) http://www.cccconfer.org/support/technicalSupport.aspx

Google Java download

Start

Sound Check

Students that dial-in should mute their line using *6 to prevent unintended noises distracting the web conference.

*Instructor can use *96 to mute all student lines.*

First Minute Quiz

Please answer these questions **in the order** shown:

Use CCC Confer White Board

email answers to: risimms@cabrillo.edu

(answers must be emailed within the first few minutes of class for credit)

TCP/IP Review

Objectives	Agenda
Objectives • Review the TCP/IP protocol stack • Review IP addressing	 Quiz #1 Certifications Vocabulary Conferences Newsletters and Blogs TCP/IP model Network Access layer Internet layer Transport layer Application layer
	Transport layer
	AssignmentWrap up

Introductions and Credits

Rich Simms

- HP Alumnus.
- Started teaching in 2008 when Jim Griffin went on sabbatical.
- Rich's site: http://simms-teach.com

And thanks to:

- Steven Bolt at for his WASTC EH training.
- Kevin Vaccaro for his CSSIA EH training and Netlab+ pods.
- EC-Council for their online self-paced CEH v9 course.
- Sam Bowne for his WASTC seminars, textbook recommendation and fantastic EH website (https://samsclass.info/).
- Lisa Bock for her great lynda.com EH course.
- John Govsky for many teaching best practices: e.g. the First Minute quizzes, the online forum, and the point grading system (http://teacherjohn.com/).
- Google for everything else!

Credits

Rick Graziani

- Thanks to Rick Graziani for the use of some of his great network slides
- Rick's site: http://www.cabrillo.edu/~rgraziani/

Instructor: Rich Simms Dial-in: 888-886-3951 Passcode: **136690**

The state of the

Jordan

Karl-Heinz

Sean

Benji

Joshua Brian

Tess Jeremy

Carter

David H. Roberto

Daniel

Michael W.

Wes Thomas

Jennifer

Luis

Marcos

Mike C.

100

Tim

Email me (risimms@cabrillo.edu) a relatively current photo of your face for 3 points extra credit

Dave R.

Evading Network Devices

Cryptography

TCP/IP

Network and Computer Attacks

Hacking Wireless Networks

Hacking Web Servers

> Embedded Operating Systems

> > Desktop and Server Vulnerabilities

Ethical Hacking

CIS 76

Footprinting and Social Engineering

Port Scanning

Enumeration

Scripting and Programming

Student Learner Outcomes

1. Defend a computer and a LAN against a variety of different types of security attacks using a number of hands-on techniques.

2. Defend a computer and a LAN against a variety of different types of security attacks using a number of hands-on techniques.

Admonition

Unauthorized hacking is a crime.

The hacking methods and activities learned in this course can result in prison terms, large fines and lawsuits if used in an unethical manner. They may only be used in a lawful manner on equipment you own or where you have explicit permission from the owner.

Students that engage in any unethical, unauthorized or illegal hacking may be dropped from the course and will receive no legal protection or help from the instructor or the college.

Questions

Questions

How this course works?

Past lesson material?

Previous labs?

Chinese
Proverb他問一個問題,五分鐘是個傻子,他不問一個問題仍然是一個
傻瓜永遠。He who asks a question is a fool for five minutes; he who does not ask a question
remains a fool forever.

Certifications

	SB	KV	Simpson Textbook	<u>Concise</u> <u>Cybersecurity</u>
A+ (CompTIA)		1		
Linux Essentials (LPI)		3		
Linux+ (CompTIA)	х			
Network+ (CompTIA)		2	x	
Security+ (CompTIA)	1	4	х	x
CISSP (ISC ²)		6a	х	
CEH (EC-Council)	2	5	х	x
GPEN (SANS/GIAC)	3	6b	х	x
OPST (ISECOM)			х	
OSCP (Offensive Security)	х			X

Vocabulary

Some Terminology

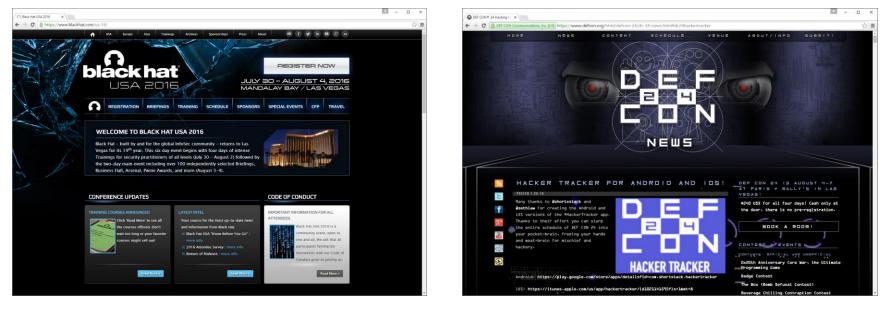
- Hacking
- □ Cracking
- White hat hacker
- □ Grey hat hacker
- Black hat hacker
- Nation-state actors
- □ Cybercriminals
- Adversary
- Hacktivist
- Pen Test
- Security audit
- White box testing
- □ Grey box testing
- Black box testing
- Red Team
- Blue Team

- Vulnerability
- Exploit
- Threat
- Denial of Service attack
- Brute force attack
- Buffer overflow
- □ Spoofing
- Zero-day
- Botnet
- □ Ransomware (link)
- □ Watering hole attack (link)
- □ Man in the middle attack
- □ Fuzzing (<u>link</u>)
- Drive-by-download (link)
- □ Cross-site scripting (link)
- □ SQL injection (link)

- □ Malware
- Virus
- □ Trojan (link)
- □ Worm (<u>link</u>)
- □ Spyware
- □ Rootkit (link)
- □ Firewall
- □ Signatures (link)
- Polymorphism
- Exfiltrate
- Social engineering
- Phishing
- □ Vishing (<u>listen</u>)
- □ Spear-phishing

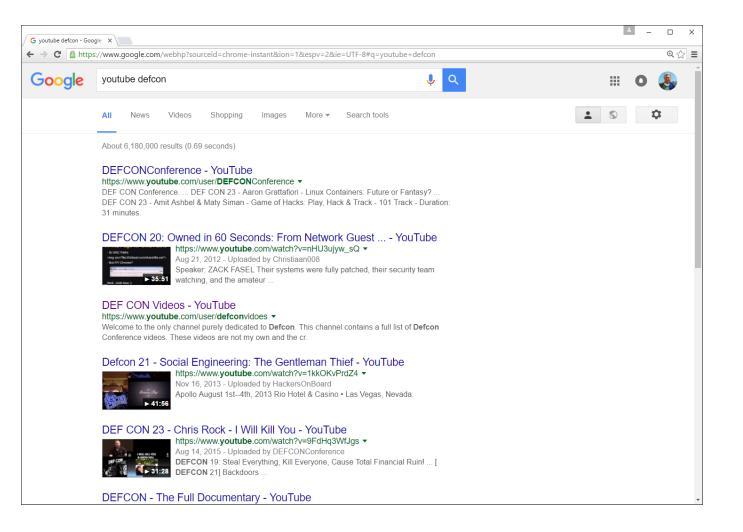
Acronyms

- □ CVE (Common Vulnerabilities and Exposures)
- DoS (Denial of Service attack)
- DDoS (Distributed Denial of Service attack)
- □ XSS (Cross-Site Scripting)
- □ IDS (Intrusion Detection System)
- □ IPS (Intrusion Prevention System)
- □ C&C (Command and Control)
- □ AV (Anti-Virus)
- □ APT (Advanced Persistent Threat)
- □ RAT (Remote Access Trojan)


Slang

- Owned
- Pwned
- □ Meat chicken ("rouji" in Chinese)
- Doxing
- Script Kiddie
- Packet Monkey

Conferences

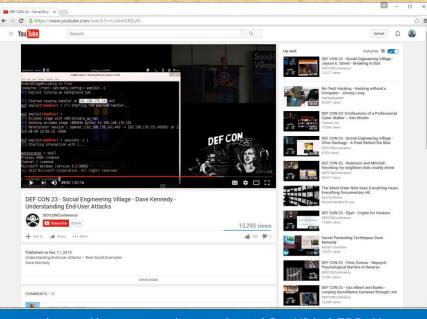

Black Hat

And many more: ToorCon, Hackers Halted, RSA, OWASP events, ShmooCon, DerbyCon, Thotcon, USENIX...

Google: youtube defcon

Looking ahead ...

Sept 10-19 2016, SANS Network Security 2016 Las Vegas July 22-27 2017, Black Hat USA 2017 Las Vegas July 27-30 2017, DEF CON 25 Las Vegas


https://www.concise-courses.com/security/conferences-of-2016/

https://www.concise-courses.com/security/conferences-of-2017/

An Expert at Work Activity

David Kennedy at Def Con 23 hacking a PC with the Social Engineering Toolkit and Metasploit

https://www.youtube.com/watch?v=UJdxrhERDyM

- Watch a portion of this video (34:00-39:45). In the HTA attack what did he mean when he said "there we go, we get our shell"? (put your answer in the chat window)
- 2. Watch a portion of this video (39:45-44:00). In the web-jacking attack what was he able to accomplish? (put your answer in the chat window)

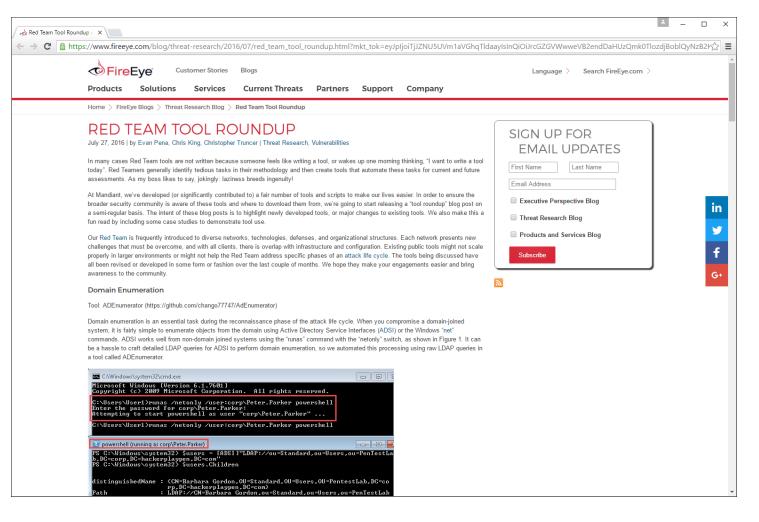
Newsletters and Blogs

Subscribe or sign up for cyber security newsletters, alerts, blogs and feeds

- □ US-CERT
- □ SANS
- □ Cybrary
- □ FireEye
- □ CrowdStrike
- □ AlienVault
- □ HackerNews
- □ Many more ...

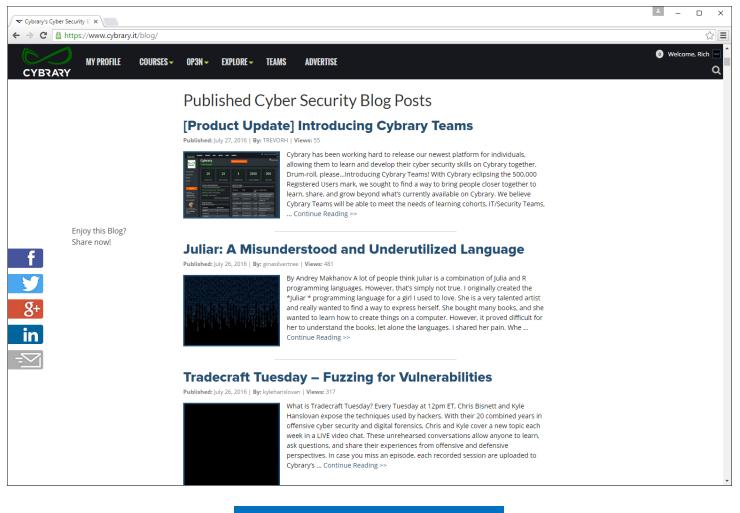
Department of Homeland Security - US-CERT

Vulnerability Summary for							×
← → C Attps://www.us-cert.gov/ncas/bulletins/SB16-207						 ŝ	≡
Official verbale of the Department of Homeland Security USS-CERT UNITED STATES COMPUTER EMERGENCY READINESS T	ЕАМ		6	٩			Î
HOME ABOUT US CAREERS PUBLICATIONS	ALERTS AND TIPS RELATED RESOURCES C ³ VP						
Bulletin (SB16-207) Vulnerability Summary for the Week of July ^{Original release} date: July 25, 2016 Print Yueet Stare	18, 2016			More Bulletins	ŝ		
The US-CERT Cyber Security Bulletin provides a summary of new (NIST) National Vulnerability Database (NVD) in the past week. Th Communications Integration Center (NCCIC) / United States Comp NVD, which contains historical vulnerability information. The vulnerabilities are based on the CVE vulnerability numing stan System (CVSS) standard. The division of high, medium, and low s	a NVD is sponsored by the Department of Homeland Securi uter Emergency Readiness Team (US-CERT). For modified dard and are organized according to severity, determined by	ty (DHS) Natio or updated en	onal Cyb tries, ple	ersecurity and ease visit the	-		
 High - Vulnerabilities will be labeled High severity if they hav Medium - Vulnerabilities will be labeled Medium severity if the 							
Low - Vulnerabilities will be labeled Low severity if they have	a CVSS base score of 0.0 - 3.9						
Entries may include additional information provided by organization values, definitions, and related links. Patch information is provided external, open source reports and is not a direct result of US-CERT	when available. Please note that some of the information in						
	High Vulnerabilities						
Primary Vendor – Product	Description	Published	CVSS Score	Source & Patch Info			
cisco – ios_xr	Cisco IOS XR 5.x through 5.2.5 on NCS 6000 devices allows remote attackers to cause a denial of service (timer consumption and Route Processor reload) via crafted SSH traffic, aka Bug ID CSCux76819.	2016-07-15	7.8	CVE-2016- 1426 CISCO &			
cisco - ios_xr	The CLI in Cisco IOS XR 6.x through 6.0.1 allows local users to execute arbitrary OS commands in a privileged context by leveraging unspecified container access.	2016-07-15	7.2	CVE-2016- 1456 CISCO @			Ŧ



SANS Blogs

SANS Penetration			
→ C 🗋 pe	en-testing.sans.org/blog#_utma=216335632.2090294832.1467909806.1469635543.1469635543.5&_utmb=216335632.5.9.146963	8387876&utmc=216335632&utmx=-&utmz=21633563	
	SANS PENETRATION TESTING Resources Training Events Cert	Lification Instructors About	
	SANS Penetration Testing		
	05 Jul 2016		
	Python Cheat Sheet - pyWars (SEC573)	8+1 Tweet RLike in Share	
	0 comments Posted by jblanchard Filed under Cheatsheet, Python by: Mark Baggett Python skills are incredibly useful for all kinds of information security personnel, from pen testers to cyber defenders to forensics pros. With so many tools written in Python and so many Python libraries to work magic in just a few lines of code, I wrote a course (SANS SEC573) on how to Continue reading Python Cheat Sheet - pyWars (SEC573)	Categories • Anomaly Analysis (1) • Anti-Virus Evasion (7) • Backdoor (2)	
	25 May 2016 SANS PowerShell Cheat Sheet from SEC560 Course 0 comments Posted by eskoudis Filed under Cheatsheet by Ed Skoudis PowerShell really is amazing, and comes in handy for all kinds of infosec tasks, from defense to analysis to offense. In the School Security EdD course and comes an handy for all kinds of infosec tasks, from defense to analysis to offense. In the School Security EdD course and comes an handy for all kinds of infosec tasks, from defense to analysis to offense. In the School Security EdD course and comes an handy for all kinds of infosec tasks, from defense to analysis to offense. In	 Catalogic (2) Challenges (25) Cheatsheet (2) cloud (1) Conferences (4) Cryptography (4) CyberCity (1) Databases (1) Enumeration (2) Exploit Development (4) File Analysis (1) fuzzing (1) 	
	my SANS Security 560 course, we cover PowerShell as a post-exploitation language, with all kinds of nifty tips and tricks for using it. When I teach the class, though, I notice Continue reading SANS PowerShell Cheat Sheet from SEC560 Course	 Infrastructure (3) Introduction (2) Legal Issues (1) Linux (1) Metasploit (7) Methodolgy (42) Mobile (18) 	
	Scapy Cheat Sheet from SANS SEC560 o comments Posted by eskoudis Filed under Scanning, scapy One of my favorite tools for fine-grained interactions with target systems during penetration testing is the mightyScapy. While other tools are indispensable for scanning large numbers of machines, Scapy is like a fine-grained scalpel for manipulating a single target in a myriad of cool ways. With all kinds of features, Scapy just rocks. In Continue reading Scapy Cheat Sheet from SANS SEC560	Network Devices (3) Nmap (2) Passwords (6) Post Exploitation (10) PowerShell (1) Presentations (9) Protocol Analysis (1) Python (11)	



FireEye Blogs

Cybrary

Hacker News

Housekeeping

- 1. Send me your student survey & agreement today.
- 2. Lab 1 due by 11:59PM (Opus time) tonight.
- 3. Last day to drop/add is this Saturday.

Change your default password on Opus

Roll Call

If you are attending class by watching the recordings in the archives email the instructor at: risimms@cabrillo.edu to provide roll call attendance.

Navigating SANS Pen Test Cheat Sheets for Fun and Profit

Thursday, September 8th, 2016 at 11:00 AM (11:00:00 EDT/US Eastern) Ed Skodis

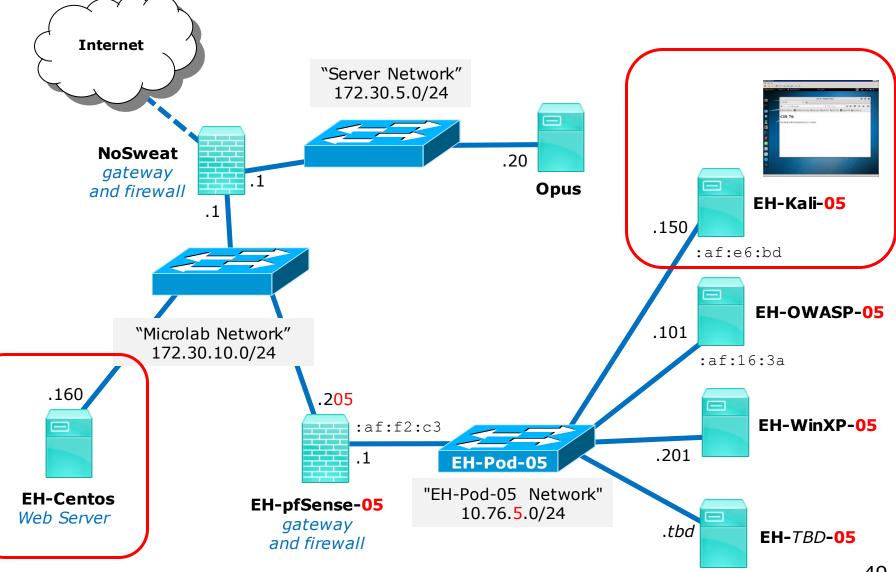
You can now attend the webcast using your mobile device!

Overview

Extra! Extra! Get yer SANS Pen Test cheat sheets here! As you may have noticed, SANS Pen Test Authors and Instructors have been on a tear lately, releasing numerous cheat sheets to help people build valuable skills. Recent releases include topics such as PowerShell, Scapy, Nmap, Metasploit, and a whole bunch more. In this engaging webcast, Ed Skoudis will take you on a tour of some of the most useful tips and ideas of these cheat sheets. Five essential things to know about PowerShell? We got that. The most useful Scapy options at a glance? Got that too. The syntax for Netcat client-to-client relays? Yep. Some late-breaking Metasploit kung fu? Oh yes. Well also look at ways you can use the cheat sheets in your work and we might even go over some useful origami tricks. Ed will also solicit ideas from you on new cheat sheets youd like to see.

https://www.sans.org/webcasts/navigating-pen-test-cheat-sheets-fun-profit-102897?utm_medium=Email&utm_source=House+List&utm_content=Naviga ting+Pen+Test+Cheat+Sheets&utm_campaign=SANS+Webcast+Internal

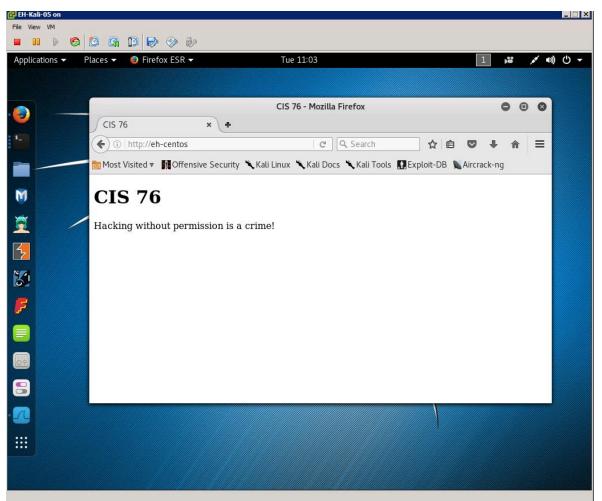
TCP/IP Review



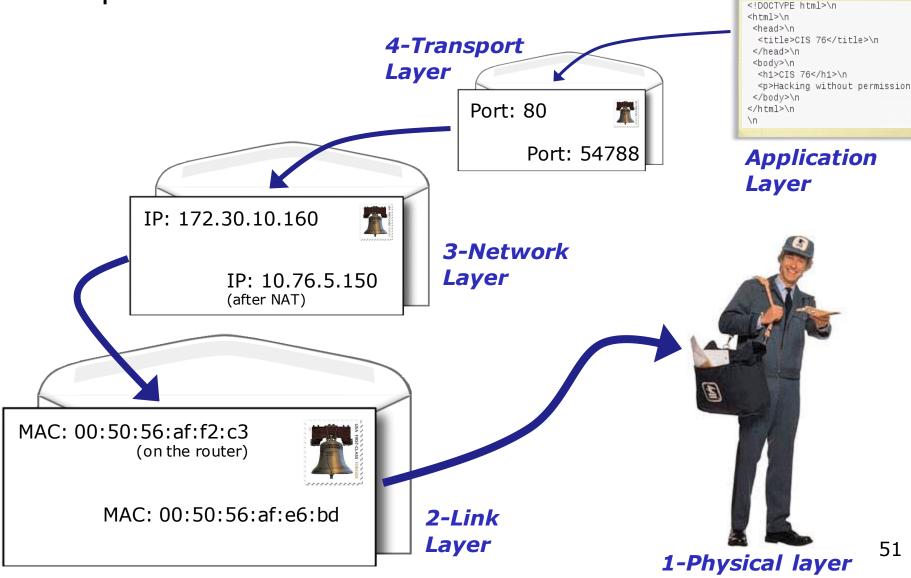
OSI and TCP/IP Models

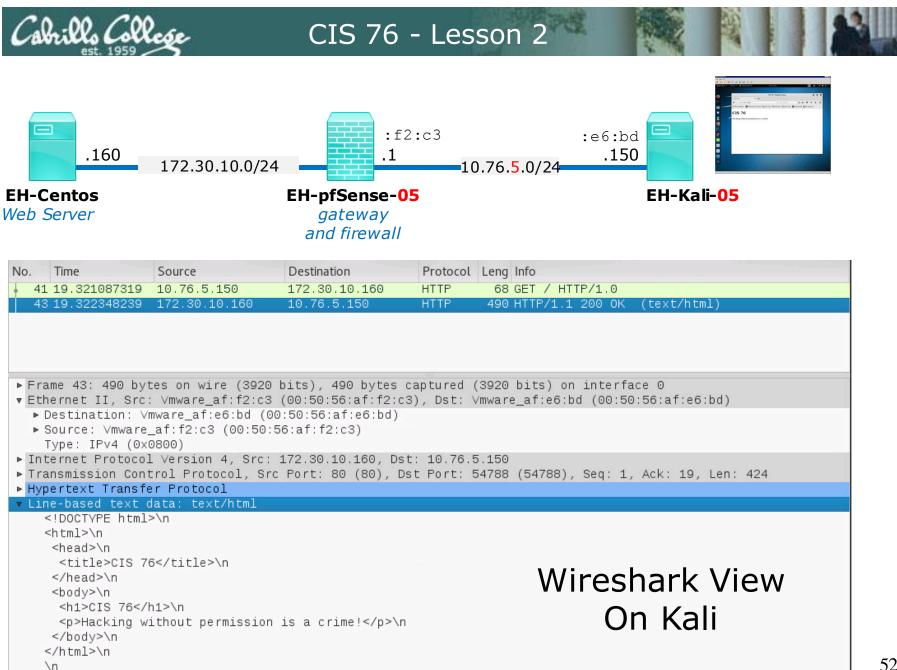
	OSI Model		TCP/IP Model	
	7. Application	HTTP, FTP,		
	6. Presentation	SMTP, SSH, SSL, POP3,	Application	Data
	5. Session	Telnet		
Layer 4	4. Transport	TCP, UDP	Transport	Segments
Layer 3	3. Network	IP, IPsec, ICMP, ARP	Internet	Packets
Layer 2	2. Data Link	PPP, ATM,	Network	Frames
Layer 1	1. Physical	Ethernet, 802.11 DSL, ISDN, RS-232	Access	Bits

Open Systems Interconnection model Model used to build the Internet



HTTP Application Example


Kali browsing a web page on EH-Centos



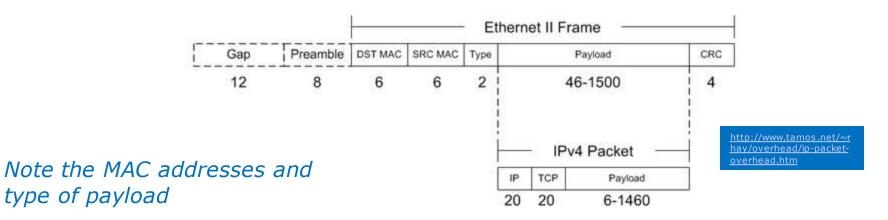
CAMBRIDGE

Encapsulation

Wireshark Follow TCP Stream View On Kali

🛃 EH-Kali-05 on		
Eile Vie <u>w</u> VM		
1		
Applications Place		
<pre>Eile Edit View G</pre>	<pre>Elag: "22044-9c-558858e1949a" Accept-Ranges: bytes Content-Length: 156 Connection: close Content-Type: text/html; charset=UTF-8 <!DOCTYPE html> <html> <head> <title>CIS 76</title> </head> <html> <head> <html> <head> <title>CIS 76</title> </head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <head> <html> <html> <head> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <html> <ht< th=""><th><pre>Expression in=29200 Len=0 M q=0 Ack=1 Win=14 ck=1 Win=29312 L sion] 80 - 54788 80 [ACK] Seq= mbled PDU] ck=17 Win=14592 ck=19 Win=14592 ck=19 Win=14592 ck=19 Win=3033 :bd) Len: 424</pre></th></ht<></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></head></html></html></head></html></head></html></head></html></head></html></head></html></head></html></head></html></head></html></head></html></head></html></head></html></head></html></head></html></head></html></head></html></head></html></head></html></html></head></html></html></pre>	<pre>Expression in=29200 Len=0 M q=0 Ack=1 Win=14 ck=1 Win=29312 L sion] 80 - 54788 80 [ACK] Seq= mbled PDU] ck=17 Win=14592 ck=19 Win=14592 ck=19 Win=14592 ck=19 Win=3033 :bd) Len: 424</pre>
	1 dient pkt(s), 2 server pkt(s), 1 turn.	
	Entire conversation (442 bytes) v Show data as ASCII v Stream 3	
	Find: Find Next	
○ ♥ wireshark_pca	Help Hide this stream Print Save as Close	(0.0%) Profile: Defa

Network Access Layer

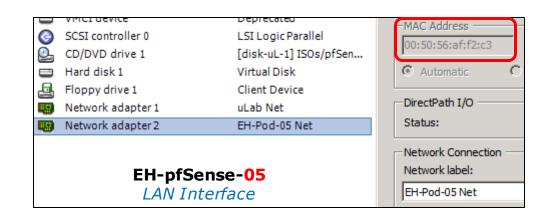

OSI and TCP/IP Models

	OSI Model		TCP/IP Model	
	7. Application	HTTP, FTP,		
	6. Presentation	SMTP, SSH, SSL, POP3, Application		Data
	5. Session	Telnet		
Layer 4	4. Transport	TCP, UDP	Transport	Segments
Layer 3	3. Network	IP, IPsec, ICMP, ARP	Internet	Packets
Layer 2	2. Data Link	PPP, ATM,	Network	Frames
Layer 1	1. Physical	<i>Ethernet, 802.11</i> <i>DSL, ISDN, RS-232</i>	Access	Bits

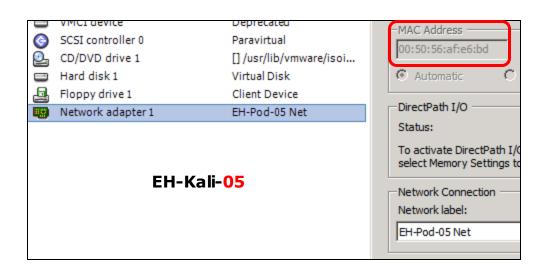
Open Systems Interconnection model Model used to build the Internet

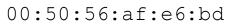
Lets start at the bottom

No.	Time	Source	Destination	Protocol	Leng Info			
+ 41	19.321087319	10.76.5.150	172.30.10.160	HTTP	68 GET / H	TTP/1.0		1
43	19.322348239	172.30.10.160	10.76.5.150	HTTP	490 HTTP/1.:	1 200 OK	(text/html)	
-				10.				
			bits), 490 bytes					
🔻 Eth	ernet II, Src:	∶ ∨mware_af:f2:c3	(00:50:56:af:f2:c	:3), Dst: \	/mware_af:e6:	bd (00:50):56:af:e6:bd));
			0:50:56:af:e6:bd)					
▶ 5	Source: ∨mware_	_af:f2:c3 (00:50:	56:af:f2:c3)					
1	Type: IPv4 (0x0	0800)		J				
▶ Int	ernet Protocol	L Version 4, Src:	172.30.10.160, Ds	t: 10.76.5	5.150			
▶ Tra	nsmission Cont	rol Protocol, Sr	c Port: 80 (80), D	st Port: 5	54788 (54788)	, Seg: 1,	Ack: 19, Ler	n: 424
	ertext Transfe							i i i i i i i i i i i i i i i i i i i
		ata: text/html						



Layer 2 - Ethernet MAC Address


- Layer 2 defines how the streams of bits are organized into frames.
- In Ethernet each frame has a source and destination MAC address.
- MAC (Media Access Control) addresses came from the original Xerox Ethernet addressing scheme.
- A MAC address has 48 bits (6 octets).
 - e.g. 00:50:56:af:e6:bd
 - Note the use of hexadecimal digits to specify the octets.
- First three octets are the OUI (Organizationally Unique Identifier).
- Last three octets are unique to the NIC (Network Interface Controller).



Layer 2 - Ethernet MAC Addresses on VMs

00:50:56:af:f2:c3

Use "Edit Settings" to view MAC addresses on the network adapters

https://www.wireshark.org/tools/oui-lookup.html

Wireshark - OL	II Lookup To 🗙	1	-		×
← ⇒ C 🔒	https://www.wireshark.org/tools/oui-lookup.html			☆ 🖸	Ξ
WIRESH	ARK			Ξ	

OUI Lookup Tool

The Wireshark OUI lookup tool provides an easy way to look up OUIs and other MAC address prefixes. It uses the Wireshark manufacturer database, which is a list of OUIs and MAC addresses compiled from a number of sources.

Directions:

Type or paste in a list of OUIs, MAC addresses, or descriptions below. OUIs and MAC addresses may be colon-, hyphen-, or period-separated.

Examples:

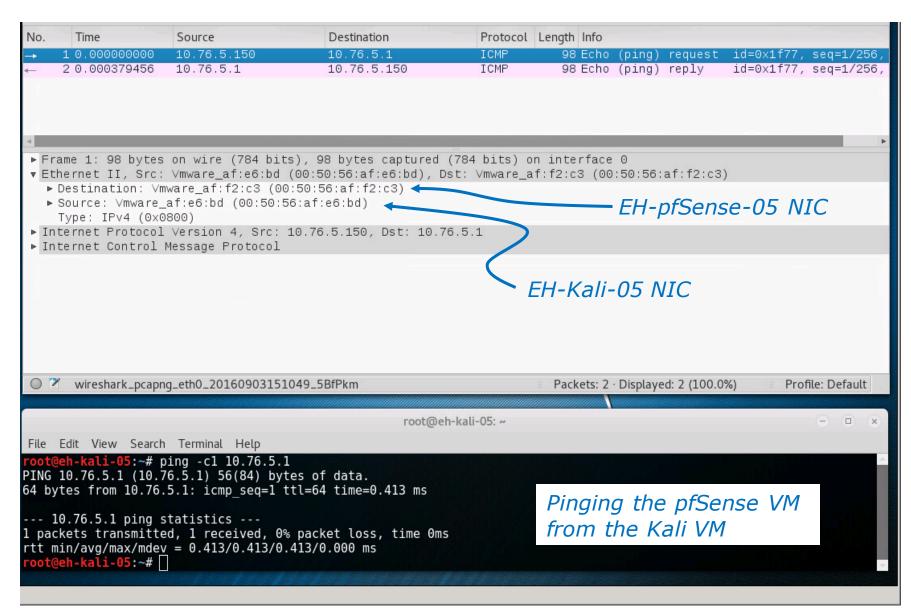
0000.0c 08:00:20 01-00-0C-CC-CC-CC missouri

OUI search 00:50:56:af:e6:bd

Find Results 00:50:56 VMware, Inc. There are many MAC Lookup tools available on the Internet to identify the company producing the network device

https://www.wireshark.org/tools/ oui-lookup.html

OUI search


00:50:56:af:e6:bd

Find

Results

00:50:56 VMware, Inc.

Example Mac Address Filtering

ASUS RT-AC66U MAC Filtering

/ISUS RT-AC66U	Logout F	Reboot		English 🔻				
++++ Quick Internet Setup	Operation Mode: <u>Wireless router</u>	Firmware Version: <u>3.0.0.4.372_67</u>	SSID: <u>Asus</u> <u>Asus_5G</u>	& ⊡ ↔ ⊑				
General	Firewall - MAC Filter							
Retwork Map	MAC filter allows you to accept or deny You can set the MAC filter to the Accept	pt or Reject mode.	ific MAC addresses.					
Guest Network	In the Reject mode, devices in the list are denied access to the network. In the Accept mode, only the devices that are in the list can access the network. The devices that are not in the list are denied access to the network.							
Traffic Manager	Basic Config							
Parental control	MAC Filter Mode	Disabled v						
	MAC filter list (Max Limit : 32)							
USB application		MAC address		Add / Delete				
AiCloud				Ð				
Advanced Settings		No data in table.						
Wireless		Apply						

This router enables MAC address filtering to Accept or Reject MAC addresses

http://event.asus.com/2012/nw/dummy_ui/en/Advanced_MACFilter_Content.html

Example Mac Address Filtering

Cisco Aironet 1300 Series Outdoor Access Point

100000		
HOME		
EXPRESS SET-UP	Hostname bridge bridge uptime is 1 day, 23 hours, 26 minutes	
EXPRESS SECURITY		
NETWORK MAP +		
ASSOCIATION +	Services: Filters - MAC Address Filters	
NETWORK +		
SECURITY +	Create/Edit Filter Index: <new></new>	
SERVICES		
Telnet/SSH		
CDP	Filter Index: (700-799)	
DNS		
Filters	Add MAC Address: Mask: 0000.0000 Action: Forward V Add	Configuring
HTTP		
Proxy Mobile IP	(НННН.НННН, (НННН.НННН)	address filters
QoS		
SNMP		on a Cisco
NTP	Default Action: Block All	on a cisco
VLAN		Access Point
		ALLESS FUILL
STP	Filters Classes:	
ARP Caching		
WIRELESS SERVICES +		
SYSTEM SOFTWARE +		
EVENTLOG +		
	Delete Class	
		B N
	Apply Delete Cancel	-

http://www.cisco.com/c/en/us/td/docs/wireless/access_point/1300/12 3_7_JA/configuration/guide/brsc1237/b37filt.html

MAC Address Spoofing

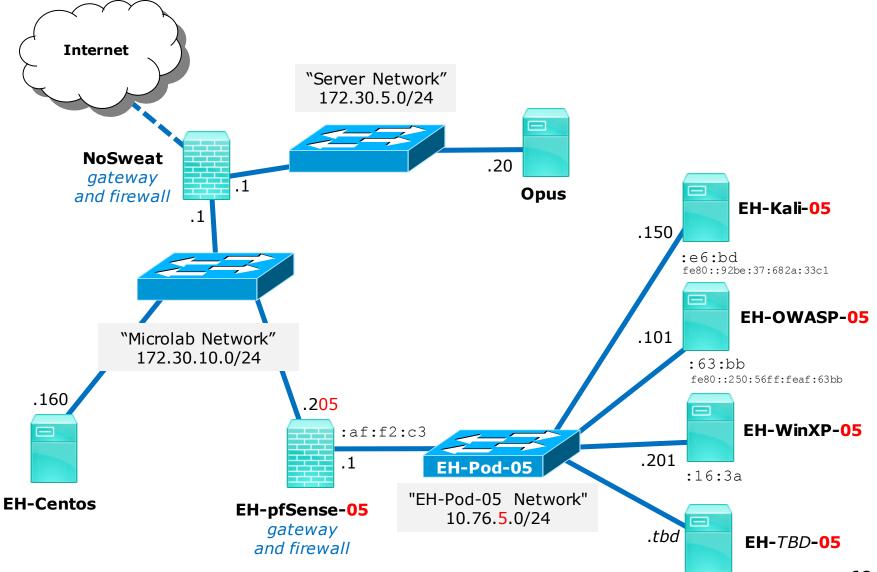
Layer 2 - MAC Address Spoofing

Why would a hacker do this?

- Create an anonymous identity for a network device.
- Impersonate another network device.
- Gain unauthorized access to services.
- Bypass access control lists that allow and block specific MAC addresses.

Live demo

<u>https://simms-</u> <u>teach.com/docs/cis76/cis76-MAC-</u> <u>spoofing.pdf</u>


ARP

ARP - Address Resolution Protocol

- ARP uses layer 2 for transport but unlike IP has no headers and is not routable.
- Before an IP packet can be sent the sender needs to know the MAC address of either:
 - The destination device if it is on the same subnet.
 - The next-hop router if the destination is on a remote network.
- The sender "shouts out" (broadcasts) to the subnet "Who has such and such IP address"
- The IP address owner sends back (unicast) the MAC address.
- The sender can then encapsulate the IP packet into an Ethernet frame and send it to the appropriate MAC address.
- Devices will temporarily save IP/MAC pairs in an arp cache for reuse.
- ARP has been replaced by Neighbor Solicitation & Advertisement in IPv6. https://keepingitclassless.net/2011/10/neighbor-solicitation-ipv6s-replacement-for-arp/

ARP Example - getting Kali VM MAC

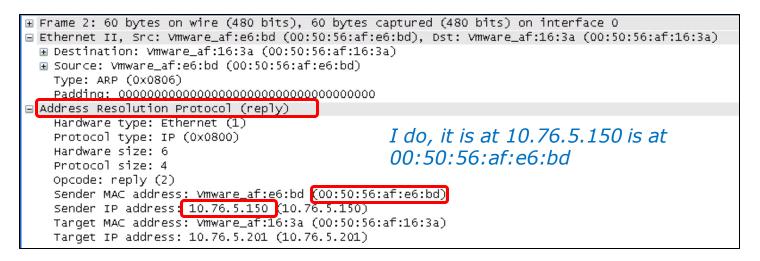
WinXP VM requests the MAC address of the Kali VM before pinging

0.00000000 Vmware_af:16:3a	Broadcast	ARP	42 who has 10.76.5.150? Tell 10.76.5.201
0.00029100 vmware_af:e6:bd	Vmware_af:16:3a	ARP	60 10.76.5.150 is at 00:50:56:af:e6:bd
0.0003070010.76.5.201	10.76.5.150	ICMP	74 Echo (ping) request id=0x0200, seq=3328/13, ttl=128 (r
0.0004990010.76.5.150	10.76.5.201	ICMP	74 Echo (ping) reply id=0x0200, seq=3328/13, ttl=64 (re

WinXP Wireshark view

C:\WINDOWS\system32\c	md.exe	
C:\>arp -a No ARP Entries Found		
C:\>ping 10.76.5.150		
Pinging 10.76.5.150 wit	th 32 bytes of data:	
Reply from 10.76.5.150 Reply from 10.76.5.150 Reply from 10.76.5.150 Reply from 10.76.5.150 Ping statistics for 10. Packets: Sent = 4, Approximate round trip	: bytes=32 time<1ms T : bytes=32 time<1ms T : bytes=32 time<1ms T .76.5.150: Received = 4, Lost =	TL=64 TL=64 TL=64 0 (0% loss),
	imum = Oms, Average =	
C:\}arp -a		
Interface: 10.76.5.201 Internet Address 10.76.5.150	Physical Address	
C:\>_		

Notice the arp cache is populated after the ping operation


WinXP command line

ARP Example - getting Kali VM MAC (drill-down)

0.00000000 Vmware_af:16:3a	Broadcast	ARP	42 who has 10.76.5.150? Tell 10.76.5.201
0.00029100 Vmware_af:e6:bd	Vmware_af:16:3a	ARP	60 10.76.5.150 is at 00:50:56:af:e6:bd
0.0003070010.76.5.201	10.76.5.150	ICMP	74 Echo (ping) request id=0x0200, seq=3328/13, ttl=128 (r
0.0004990010.76.5.150	10.76.5.201	ICMP	74 Echo (ping) reply id=0x0200, seq=3328/13, ttl=64 (re

⊞ Frame 1: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0 Ethernet II, Src: Vmware_af:16:3a (00:50:56:af:16:3a), Dst: Broadcast (ff:ff:ff:ff:ff:ff) Destination: Broadcast (ff:ff:ff:ff:ff:ff) ■ Source: Vmware_af:16:3a (00:50:56:af:16:3a) Type: ARP (0x0806) Address Resolution Protocol (request) Hardware type: Ethernet (1) Who has 10.76.5.150, Protocol type: IP (0x0800) Hardware size: 6 tell 10.76.5.201? Protocol size: 4 Opcode: request (1) Sender MAC address: Vmware_af:16:3a (00:50:56:af:16:3a) Sender IP address: 10.76.5.201 (10.76.5.201) Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00) Target IP address: 10.76.5.150 (10.76.5.150)

ARP Example - getting OWASP VM MAC

WinXP VM requests the MAC address of the OWASP VM before pinging

Time	Source	Destination	Protocol	Length Info
0.000000	000 Vmware_af:16:3a	Broadcast	ARP	42 who has 10.76.5.101? Tell 10.76.5.201
0.000373	300 Vmware_af:63:bb	Vmware_af:16:3a	ARP	60 10.76.5.101 is at 00:50:56:af:63:bb
0.000390	00010.76.5.201	10.76.5.101	ICMP	74 Echo (ping) request id=0x0200, seq=4352/17, ttl=128 (r
0.000524	40010.76.5.101	10.76.5.201	ICMP	74 Echo (ping) reply id=0x0200, seq=4352/17, ttl=64 (re

WinXP Wireshark view

C:\Varpa	
No ARP Entries Found	
C:\>ping 10.76.5.101 Pinging 10.76.5.101 with 32 bytes of data:	
Reply from 10.76.5.101: bytes=32 time<1ms TTL=64 Reply from 10.76.5.101: bytes=32 time<1ms TTL=64 Reply from 10.76.5.101: bytes=32 time<1ms TTL=64 Reply from 10.76.5.101: bytes=32 time<1ms TTL=64	
Ping statistics for 10.76.5.101: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = Oms, Maximum = Oms, Average = Oms	Notice the
C:\>arp -a	arp cache is
Interface: 10.76.5.201 0x2 Internet Address Physical Address Type 10.76.5.101 00-50-56-af-63-bb dynamic	populated after the ping

WinXP command line

ARP Example - getting OWASP VM MAC (drill-down)

Source 0.00000000 Vmware_af:16:3a 0.00037300 Vmware_af:63:bb 0.00039000 10.76.5.201		Protocol ARP ARP ICMP	42 who has 10.76.5.101? Tell 10.76.5.201 60 10.76.5.101 is at 00:50:56:af:63:bb 74 Echo (ping) request id=0x0200, seq=4352/17, ttl=128 (r						
0.0005240010.76.5.101		ICMP	74 Echo (ping) reply id=0x0200, seq=4352/17, ttl=64 (re						
 ➡ Frame 1: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0 ■ Ethernet II, Src: Vmware_af:16:3a (00:50:56:af:16:3a), Dst: Broadcast (ff:ff:ff:ff:ff:ff) ■ Destination: Broadcast (ff:ff:ff:ff:ff:ff) ■ Source: Vmware_af:16:3a (00:50:56:af:16:3a) Type: ARP (0x0806) ■ Address Resolution Protocol (request) 									
	e: Ethernet (1) e: IP (0×0800)		Who has 10.76.5.101,						
Hardware siz Protocol siz Opcode: requ	e: 4		tell 10.76.5.201?						
Sender MAC address: <u>Mmware_af</u> :16:3a (00:50:56:af:16:3a) Sender IP address: 10.76.5.201 (10.76.5.201) Target MAC address: 00:00:00.00.00:00:00:00:00:00:00:00)									
Target IP address: 10.76.5.101 (10.76.5.101)									
■ Frame 2: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface 0 ■ Ethernet II Spc: Vmware af:63:bb (00:50:56:af:63:bb) Dst: Vmware af:16:3a (00:50:56:af:16:3a)									

net II, Src: Vmware_at:63:bb (00:50:56:at:63:bb), Dst: Vmware_at:16:3a Source: Vmware_af:63:bb (00:50:56:af:63:bb) Type: ARP (0x0806) Address Resolution Protocol (reply) Hardware type: Ethernet (1) I do, it is at 10.76.5.101 is at Protocol type: IP (0x0800) Hardware size: 6 00:50:56:af:63:bb Protocol size: 4 Opcode: reply (2) Sender MAC address: Vmware_af:63:bb (00:50:56:af:63:bb) Sender IP address: 10.76.5.101 (10.76.5.101) Target MAC address: Vmware_af:16:3a (00:50:56:af:16:3a) Target IP address: 10.76.5.201 (10.76.5.201)

Kali Wireshark view

No.	Time	Source	Destination	Protocol	Leng Info		A		
1	2 60.048792053	fe80::92be:37:6	ff02::1:ffaf:63bb	ICMPv6	86 Neighbor Solicitat:	Lon for f	e80::250:56ff:f		
	3 60.049136713	fe80::250:56ff:	fe80::92be:37:68	ICMPv6	86 Neighbor Advertiser	nent fe80	::250:56ff:feaf		
	4 60.049155306	fe80::92be:37:6	fe80::250:56ff:f	ICMPv6	118 Echo (ping) request				
	5 60.049331414	fe80::250:56ff:	fe80::92be:37:68	ICMPv6	118 Echo (ping) reply :				
			fe80::250:56ff:f		118 Echo (ping) request				
	7 61.049953479	fe80::250:56ff:	fe80::92be:37:68	ICMPv6	118 Echo (ping) reply :	Ld=0×5691	, seq=2, hop li… 🔽		
►F	▶ Frame 2: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface 0								
<pre>v Ethernet II, Src: Vmware_af:e6:bd (00:50:56:af:e6:bd), Dst: IPv6mcast_ff:af:63:bb (33:33:ff:af:63:bb)</pre>									
			bb (33:33:ff:af:63						
	▶ Source: ∨mware_	_af:e6:bd (00:50:5	6:af:e6:bd)						
	Type: IPv6 (0x8								
▼ Internet Protocol Version 6, Src: fe80::92be:37:682a:33c1, Dst: ff02::1:ffaf:63bb									
	0110 = Version: 6								
▶ 0000 0000 = Traffic class: 0×00 (DSCP: CS0, ECN: Not-ECT) 0000 0000 0000 0000 000									
			00 0000 = Flowlabe	T: 0×0000	10000				
	Payload length: Next header: IC		root@eh-kal	i-05:~ # p	ing6 -c2 fe80::250:56ff:	feaf:63bb			
	Hop limit: 255	SMF VO (50)			feaf:63bb(fe80::250:56ff:				
		92be:37:682a:33c1			250:56ff:feaf:63bb%eth0:				
		f02::1:ffaf:63bb	64 bytes fr	om te80::	250:56ff:feaf:63bb%eth0:	1cmp_seq=2	2 ttl=64 time=0.402 ms		
	[Source GeoIP:		fo802	50.56ff.f	eaf:63bb ping statistics				
	[Destination Ge				d, 2 received, 0% packet		999ms		
v 3	-	Message Protocol			= 0.233/0.317/0.402/0.08				
) root@eh-kal	<mark>i-05:∼</mark> # i	p -6 neighbor show				
	Code: 0				63bb dev eth0 lladdr 00:5	0:56:af:63	3:bb REACHABLE		
	Checksum: Oxefo	d9 [correct]	root@eh-kal	i-05:~#					
	Reserved: 00000	0000				17 - E			
	-	: fe80::250:56ff:f				Kali	command line		
	 ICMPv6 Option ((Source link-layer	address : 00:50:5	6:af:e6:b	od)				

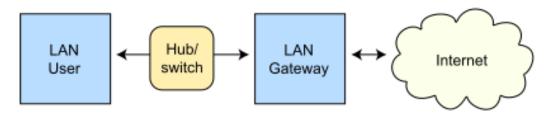
Notice the multicast solicitation is asking for the MAC address of the OWASP VM

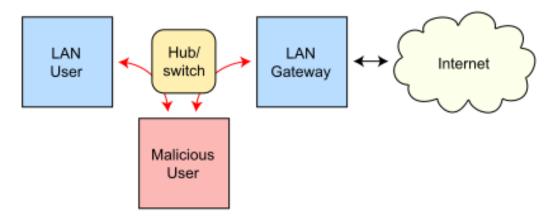
Kali Wireshark view

No	2 60.048792053 3 60.049136713 4 60.049155306 5 60.049331414	fe80::250:56ff: fe80::92be:37:6 fe80::250:56ff: fe80::92be:37:6	Destination ff02::1:ffaf:63bb fe80::92be:37:68 fe80::250:56ff:f fe80::92be:37:68 fe80::250:56ff:f fe80::92be:37:68	ICMPv6 ICMPv6 ICMPv6 ICMPv6	86 Neigh 86 Neigh 118 Echo 118 Echo 118 Echo	nbor Adve (ping) r (ping) r (ping) r	rtisement equest id eply id=0 equest id	fe80::25 =0x5691, x5691, se =0x5691,	:250:56ff:f. 50:56ff:feaf. seq=1, hop . eq=1, hop li. seq=2, hop . eq=2, hop li.	
•	Ethernet II, Src: Destination: Vm Source: Vmware_ Type: IPv6 (0x8	: ∨mware_af:63:bb mware_af:e6:bd (00 _af:63:bb (00:50:5 36dd)	6:af:63:bb)), Dst: V	mware_af:e	e6:bd (00	0:50:56:af	,		
•	 Internet Protocol Version 6, Src: fe80::250:56ff:feaf:63bb, Dst: fe80::92be:37:682a:33c1 0110 = Version: 6 0000 0000 = Traffic class: 0x00 (DSCP: CS0, ECN: Not-ECT) 0000 0000 0000 0000 0000 = Flowlabel: 0x00000000 Payload length: 32 									
	[Source SA MAC: Destination: fe	250:56ff:feaf:63bb : Vmware_af:63:bb e80::92be:37:682a:	(00:50:5 <mark>64 </mark> 33c1 Notic	250:56ff: om fe80::: ce the r	feaf:63bb(250:56ff:fe	fe80::250 eaf:63bb% <i>r list o</i>	:56ff:feaf eth0: icmp n Kali is	:63bb) 56 _seq=1 tt	data bytes l=64 time=0.2 ated now	33 ms 15
۲	Type: Neighbor Code: 0	eoIP: Unknown] Message Protocol Advertisement (13	2 packets t rtt min/avg v6 root@eh-kal	ransmitte /max/mdev i-05:~# i 6ff:feaf:	d, 2 receiv = 0.233/0 p -6 neight	ved, 0% p .317/0.40 bor show	acket loss 2/0.086 ms			
ſ		000 • fe80••250•56ff•f	eaf:63bb address : 00:50:5	6:af:63:b	b)			Kali co	mmand lin	e ,

Notice the advertisement contains the OWASP MAC address

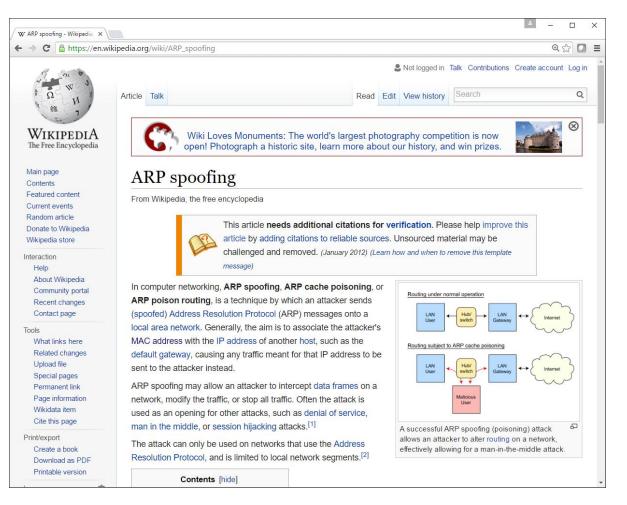
CIS 76 - Lesson 2


MITM attack using ARP Poisoning


CIS 76 - Lesson 2

Background on ARP Spoofing

Routing under normal operation


Routing subject to ARP cache poisoning

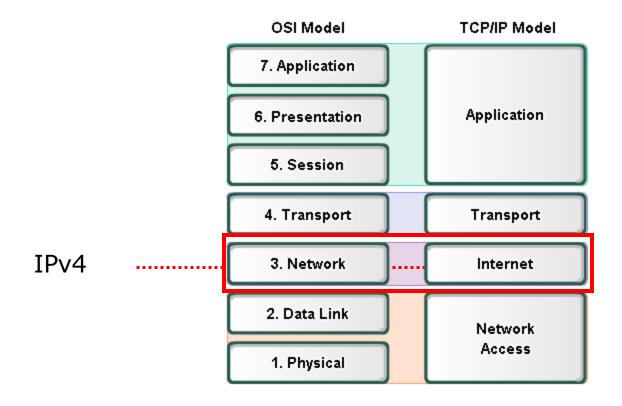
Source: By 0x55534C - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15034709

ARP Spoofing

Wiki article on ARP spoofing

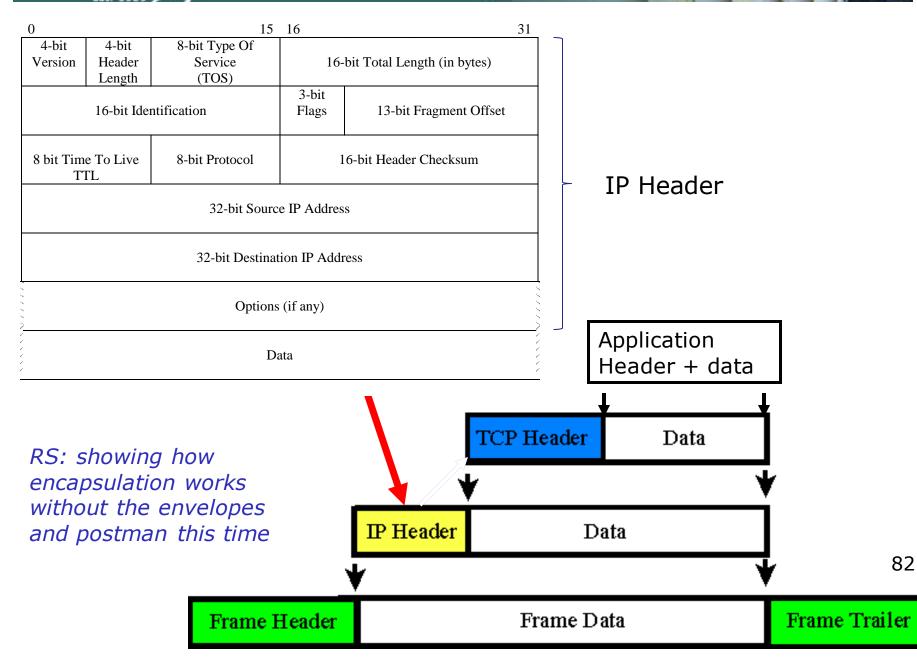
Live demo

<u>https://simms-</u> <u>teach.com/docs/cis76/cis76-MITM-</u> <u>arp-poison.pdf</u>



CIS 76 - Lesson 2

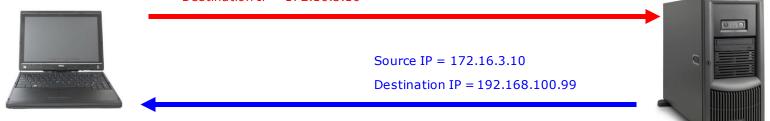
Network Layer


Network Layer

RS: More on Layer 3 tonight

Avrillo Lottege

LIS /0 - LESSON Z


Addressing

192.168.100.99

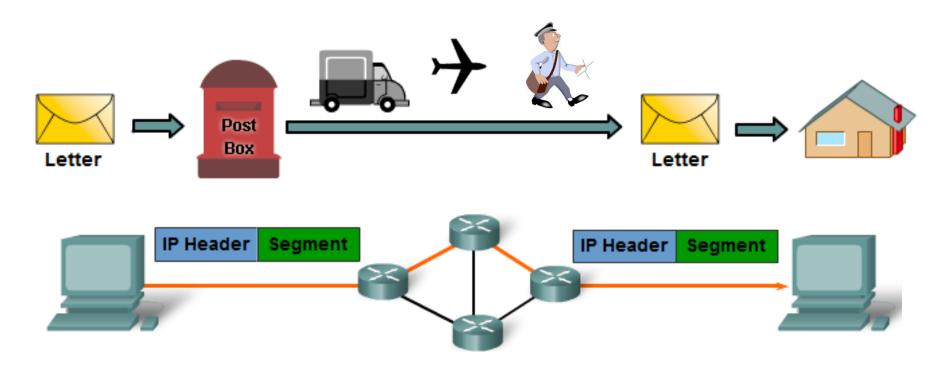
Source IP = 192.168.100.99

Destination IP = 172.16.3.10

172.16.3.10

- Source IP Address
- Destination IP Address
- More later!

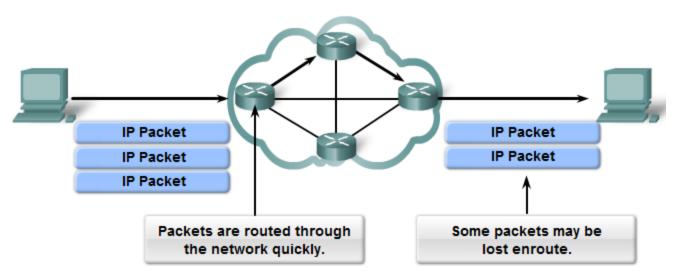
RS: Layer 3 is where IP addresses are used. They are put in the header of the layer three packets.


Network Layer Protocols

- Internet Protocol version 4 (IPv4)
- Internet Protocol version 6 (IPv6)
- Novell Internetwork Packet Exchange (IPX)
- AppleTalk
- Connectionless Network Service (CLNS/DECNet)

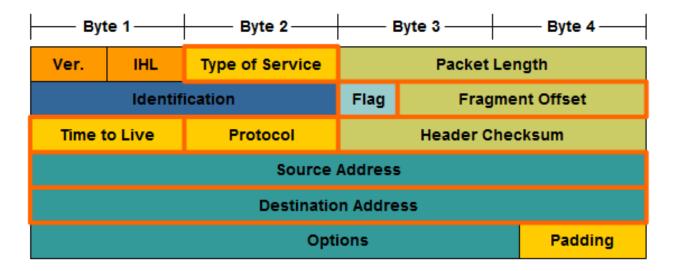
• The Internet Protocol (IPv4 and IPv6) is the most widelyused Layer 3 data carrying protocol and will be the focus of this course.

Connectionless



IP packets are sent without notifying the end host that they are coming. (Layer 3)

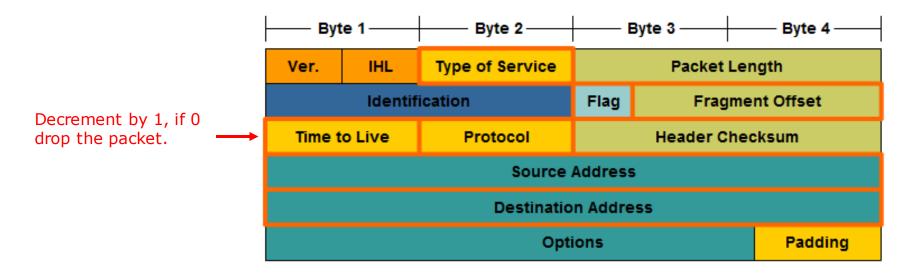
- TCP: A <u>connection-oriented protocol</u> does require a connection to be established prior to sending TCP segments. (Layer 4)
- UDP: A <u>connectionless protocol</u> does not require a session to be established. (Layer 4)


Best Effort Service (unreliable)

- The mission of Layer 3 is to <u>transport the packets</u> between the hosts while <u>placing as little burden on the network</u> as possible.
 - Speed over reliability
- Layer 3 is <u>not concerned with or even aware</u> of the type of <u>data</u> contained <u>inside of a packet</u>.
 - This responsibility is the role of the upper layers as required.
- **Unreliable**: IP <u>does not have the capability or responsibility</u> to <u>manage or recover from, undelivered or corrupt packets</u>.
 - <u>TCP's</u> responsibility at the end-to-end hosts

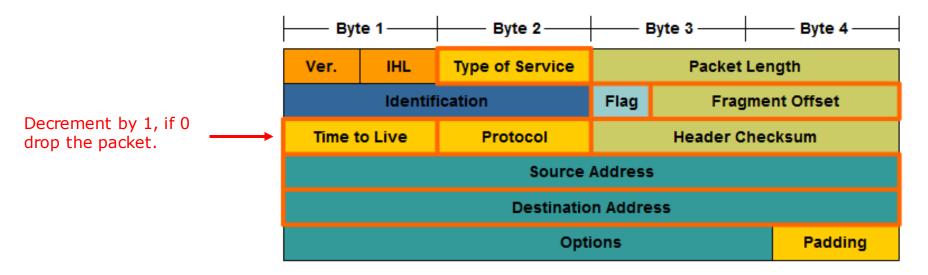
IP Header

• IP Destination Address

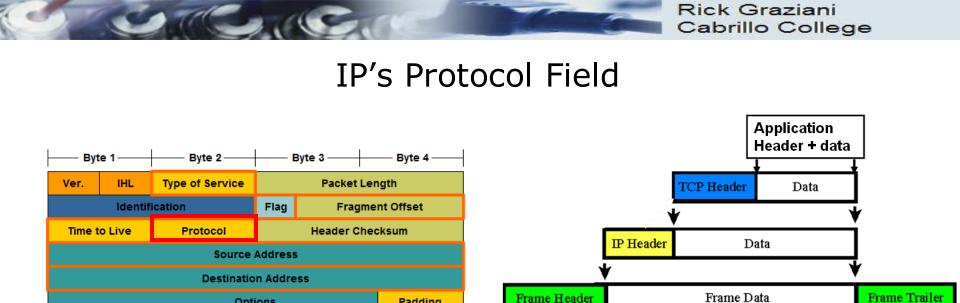

 32-bit binary value that represents the packet destination Network layer host address.

• IP Source Address

 32-bit binary value that represents the packet source Network layer host address.


IP's TTL - Time To Live field

- If the router decrements the TTL field to 0, it will then drop the packet (unless the packet is destined specifically for the router, i.e. ping, telnet, etc.).
- Common operating system TTL values are:
 - UNIX: **255**
 - Linux: 64 or 255 depending upon vendor and version
 - Microsoft Windows 95: **32**
 - Other Microsoft Windows operating systems: 128

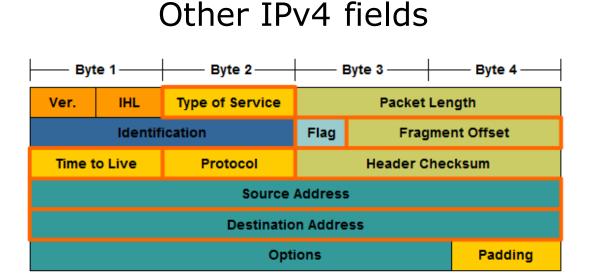


IP's TTL - Time To Live field

- The idea behind the TTL field is that <u>IP packets can not travel</u> around the Internet forever, from router to router.
- Eventually, the packet's TTL which reach 0 and be dropped by the router, even if there is a routing loop somewhere in the network.

RS: TTL errors are used by traceroute and mtr to discover the path a packet takes

Protocol field enables the Network layer to pass the data to the appropriate upper-layer protocol.


Padding

Example values are:

Options

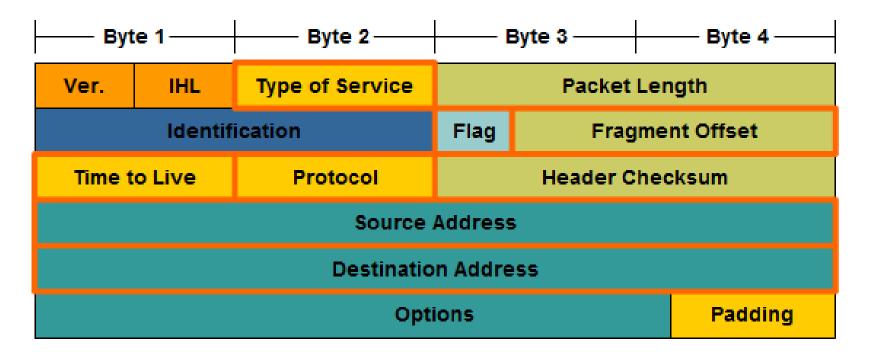
- 01 ICMP
- 06 TCP
- 17 UDP _

- **Version** Contains the IP version number (4)
- Header Length (IHL) Specifies the size of the packet header.
- Packet Length This field gives the entire packet size, including header and data, in bytes.
- **Identification** This field is primarily used for uniquely identifying fragments of an original IP packet
- **Header Checksum** The checksum field is used for error checking the packet header.
- **Options** There is provision for additional fields in the IPv4 header to provide other services but these are rarely used.

Viewing Layer 3 information with Wireshark

No.	Time	Source	Destination	Protocol	Leng I	Info							▲
41	19.321087319	10.76.5.150	172.30.10.160	HTTP	68 0	GET /	HTTP/	1.0					
42	19.322005417	172.30.10.160	10.76.5.150	TCP	66 8	30 → 5	4788	[ACK]	Seq=1	Ack=19	9 Win=14	4592 Le	
43	19.322348239	172.30.10.160	10.76.5.150	HTTP	490 H	HTTP/1	.1 20	00 OK	(text	/html)			
	19.322361391			TCP								=30336	
	19.322412549		10.76.5.150									9 Win=1	
46	19.322580304	10.76.5.150	172.30.10.160	TCP	66 5	54788	→ 80	[FIN,	ACK]	Seq=19	Ack=426	5 Win=3	•
▶ Fra	▶ Frame 44: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface 0												
			(00:50:56:af:e6:bd)							f:f2:c3)		
▼Int	ernet Protocol	L Version 4, Src: :	10.76.5.150, Dst: 1	72.30.10	.160)							
	0100 = Version: 4												
	0101 = Header Length: 20 bytes (5)												
			×10 (DSCP: Unknown,	ECN: No	t-ECT)							
	Total Length: 52												
	Identification: 0xff8b (65419)												
	▶ Flags: 0x02 (Don't Fragment)												
	Fragment offse												
Time to live: 64 Time to Live (TTL							TL)						
Protocol: TCP (6) ► Header checksum: 0x7488 [validation disabled] Protocol of the data ca							arried	d in th	e pavlo	oad			
· · · · ·	Source: 10.76.5.150												
Destination: 172.30.10.160					Source and destination IP addresses								
[Source GeoIP: Unknown]													
	[Destination GeoIP: Unknown]												
	▶ Transmission Control Protocol, Src Port: 54788 (54788), Dst Port: 80 (80), Seq: 19, Ack: 425, Len: 0												

Traffic between EH-Centos VM and EH-Kali VM



CIS 76 - Lesson 2

IPv4addressing & subnetting

IPv4 Addresses

• IPv4 addresses are 32 bit addresses

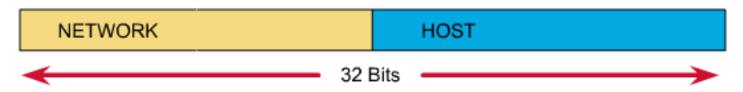
IPv4 Addresses

• IPv4 Addresses are 32 bit addresses:

1010100111000111010001011000100

10101001 11000111 01000101 10001001

 We use dotted notation (or dotted decimal notation) to represent the value of each byte (octet) of the IP address in decimal.

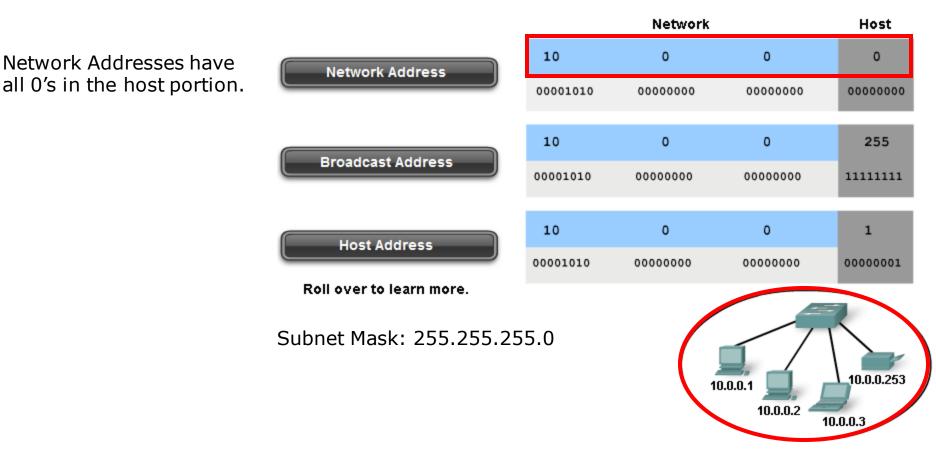

10101001110001110100010110001001169....69...

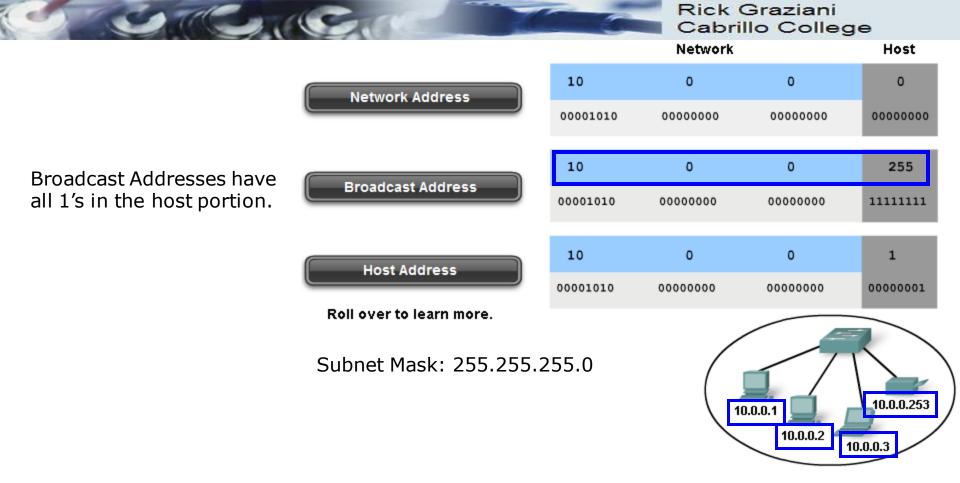
IPv4 Addresses

An IP address has two parts:

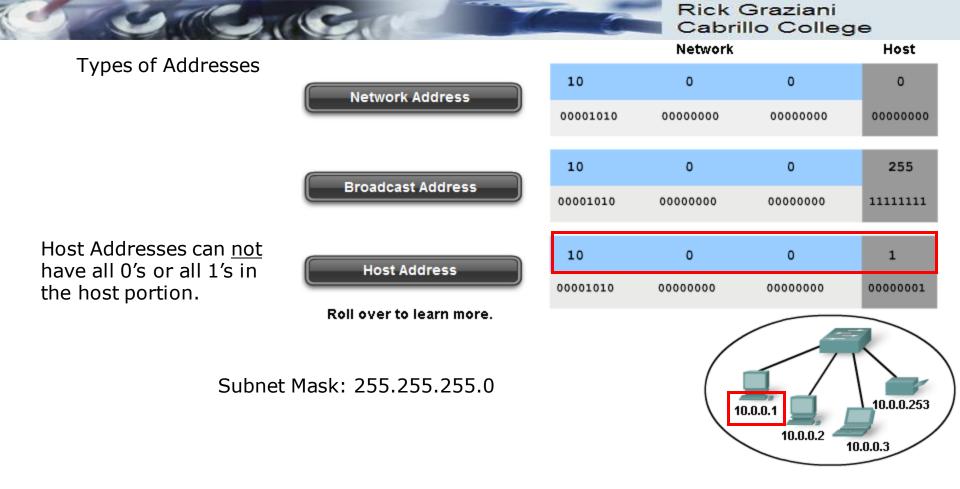
- network number
- host number

Which bits refer to the network number?

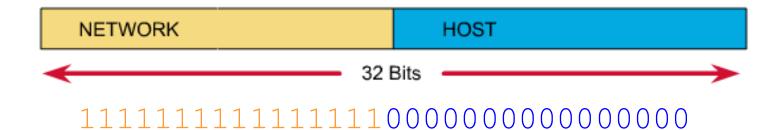

Which bits refer to the host number?


IPv4 Addresses

Answer:

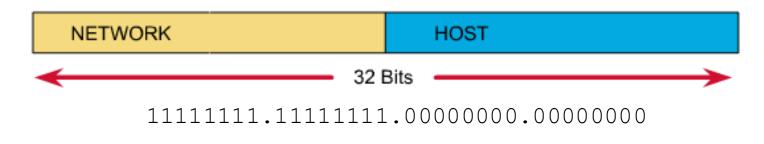

- Newer technology Classless IP Addressing
 - The **subnet mask** determines the network portion and the host portion.
 - Value of first octet does NOT matter (older classful IP addressing)
 - Hosts and Classless Inter-Domain Routing (CIDR).
 - Classless IP Addressing is what is used within the Internet and in most internal networks.
- Older technology Classful IP Addressing
 - Value of first octet determines the network portion and the host portion.
 - Used with classful routing protocols like RIPv1.
 - The Cisco IP Routing Table is structured in a classful manner (CIS 82)

- **Network address** The address by which we refer to the network
- **Broadcast address** A special address used to send data to all hosts in the network
- Host addresses The addresses assigned to the end devices in the network


- **Network address** The address by which we refer to the network
- Broadcast address A special address used to send data to all hosts in the network
- Host addresses The addresses assigned to the end devices in the network

- **Network address** The address by which we refer to the network
- Broadcast address A special address used to send data to all hosts in the network
- Host addresses The addresses assigned to the end devices in the network

Dividing the Network and Host Portions



• Subnet Mask

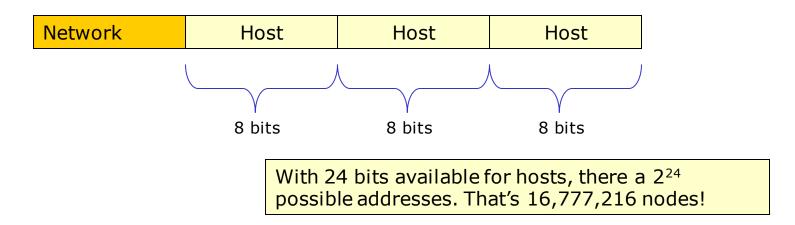
- Used to define the:
 - Network portion
 - Host portion
- 32 bits
- Contiguous set of 1's followed by a contiguous set of 0's
 - 1's: Network portion
 - 0's: Host portion

Dividing the Network and Host Portions

Dotted decimal: 255 . 255 . 0 . 0

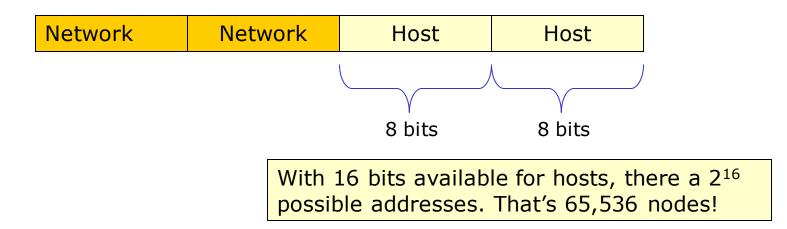
Slash notation: /16

- Subnet mask expressed as:
 - Dotted decimal
 - Ex: 255.255.0.0
 - Slash notation or prefix length
 - /16 (the number of one bits)

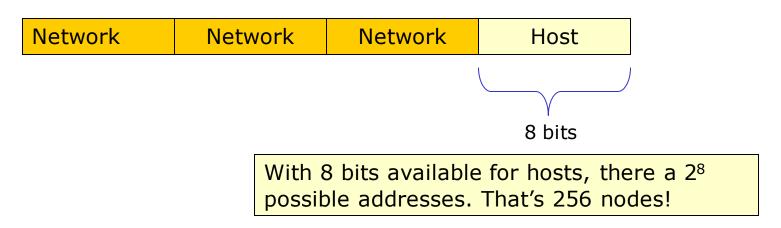

Why the mask matters: Number of hosts!

Subnet Mask:	1st octet	2nd octet	3rd octet	4th octet	
255.0.0.0 or /8	Network	Host	Host	Host	
255.255.0.0 or /16	Network	Network	Host	Host	
255.255.255.0 or /24	Network	Network	Network	Host	

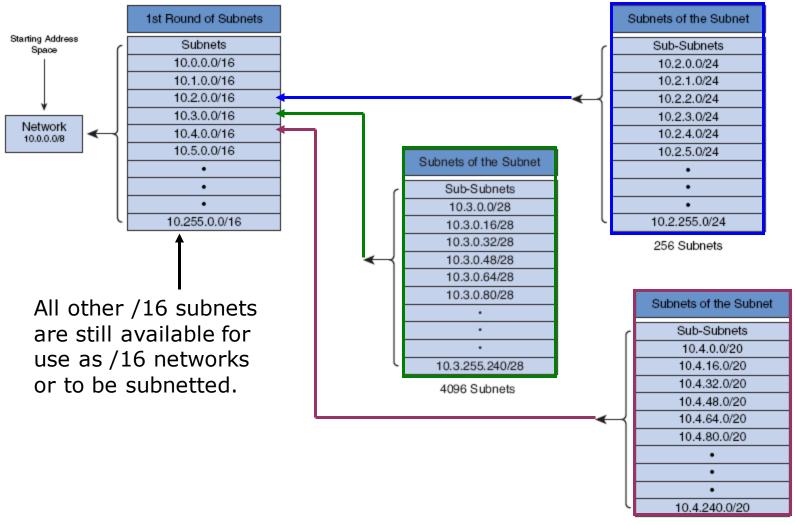
- The more host bits in the subnet mask means the more hosts in the network.
- Subnet masks do not have to end on "natural octet boundaries"


Subnet: 255.0.0.0 (/8)

- Only large organizations such as the military, government agencies, universities, and large corporations have networks with these many addresses.
- Example: A certain cable modem ISP has 24.0.0.0 and a DSL ISP has 63.0.0.0


Subnet: 255.255.0.0 (/16)

 65,534 host addresses, one for network address and one for broadcast address.


Subnet: 255.255.255.0 (/24)

• 254 host addresses, one for network address and one for broadcast address.

VLSM - Variable Length Subnet Masks Subnet a subnet

107

16 Subnets

Special Unicast IPv4 Addresses

• Default Route

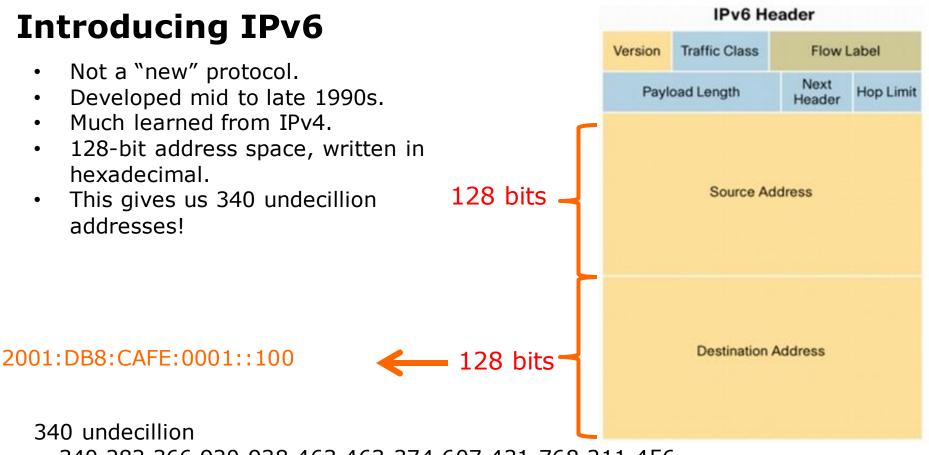
O Use the following IP address:					
IP address:	192.168.1.100				
Subnet mask:	255.255.255.0				
Default gateway:	192.168.1.1				

• Loopback Address

- Special address that hosts use to direct traffic to themselves.
- 127.0.0.0 to 127.255.255.255

• Link-Local Addresses (APIPA)

- 169.254.0.0 to 169.254.255.255 (169.254.0.0 /16)
- Can be automatically assigned to the local host by the operating system in environments where no IP configuration is available.
- Microsoft calls this APIPA (Automatic Private IP Addressing)


• TEST-NET Addresses

- 192.0.2.0 to 192.0.2.255 (192.0.2.0 /24)
- Set aside for teaching and learning purposes.
- These addresses can be used in documentation and network examples.

nt.

1.2 Introducing IPv6

- the most -

= 340,282,366,920,938,463,463,374,607,431,768,211,456

Rick Graziani © Cabrillo College

110

IPv6

- How many is 340 undecillion?
- 340 undecillion addresses is 10 nonillion addresses per person!
- Internet is a much different place and will continue to evolve:
 - Mobile devices
 - Video on demand
 - Internet of Everything
 - A critical part in how we "live, work, play, and learn".

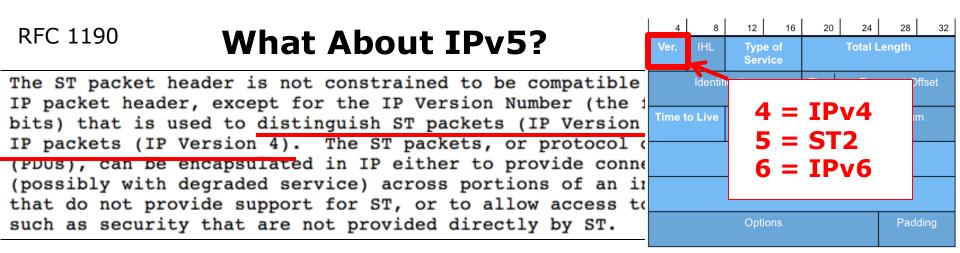
111

10 nonillion

= 10,000,000,000,000,000,000,000,000,000

IPv6

- IPv6 is not just about more addresses:
 - Stateless autoconfiguration
 - End-to-end reachability without private addresses and NAT
 - Better support for mobility
 - Peer-to-peer networking easier to create and maintain, and services such as VoIP and Quality of Service (QoS) become more robust.


IPv6: A Brief History

		-
Network Working Group S. Deering, Xerox PA	ARC	Network Working Group S. Deering
Request for Comments: 1883 R. Hinden, Ipsilon Network Category: Standards Track December 19		Request for Comments: 2460 Cisco
category: Standards frack December 1	993	Obsoletes: 1883 R. Hinden
		Category: Standards Track Nokia
		December 1998
Internet Protocol, Version 6 (IPv6) Specification		
		Internet Protocol, Version 6 (IPv6) Specification
Status of this Memo) i ing	s Status of this Memo
This document specifies an Internet standards track protocol for th Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimite	P). he urp ati t 1,	This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet

113

- 1993, IETF announced a call for white papers with RFC 1550 *IP: Next Generation (IPng) White Paper Solicitation*.
- IETF chose Simple Internet Protocol Plus (SIPP) written by Steve Deering, Paul Francis, and Bob Hinden but changed the address size from 64 bits to 128 bits.
- 1995, IETF published RFC 1883 Internet Protocol, Version 6 (IPv6) Specification - later obsoleted by RFC 2460 in 1998.

- In the late 1970s, a family of experimental protocols was developed intended to provide quality of service (QoS) for real-time multimedia applications such video and voice.
- Known as Internet Stream Protocol (ST) and later ST2 (RFC 1190 and RFC 1819).

114

• Although it was never known as IPv5, when encapsulated in IP, ST uses IP Protocol version 5.

Transport Layer

OSI and TCP/IP Models

	OSI Model	TCP/IP Model					
	7. Application	HTTP, FTP,		Data			
	6. Presentation	SMTP, SSH, SSL, POP3,	Application				
	5. Session	Telnet					
Layer 4	4. Transport	TCP, UDP	Transport	Segments			
Layer 3	3. Network	IP, IPsec, ICMP, ARP	Internet	Packets			
Layer 2	2. Data Link	PPP, ATM, Ethernet 802 11 Network		Frames			
Layer 1	1. Physical	Ethernet, 802.11 DSL, ISDN, RS-232	Access	Bits			

Open Systems Interconnection model Model used to build the Internet

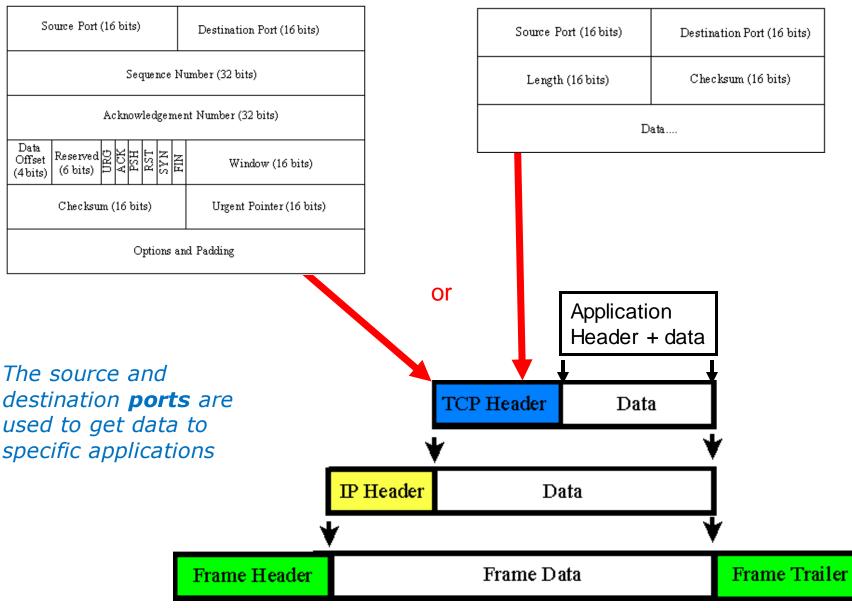
Transport Layer

The Protocols

There are two primary protocols operating at the Transport layer:

User Datagram Protocol (UDP) Connectionless *(snmp traps are "fire and forget")* Stateless *Unreliable* The UDP packet is called a **packet**

Transmission Control Protocol (TCP) Connection-oriented Stateful *(like new or established states in firewalls) Reliable* The TCP packet is called a **segment**



CIS /O - LESSON Z

TCP Header

Carritto Lottese

UDP Header

Transport Layer

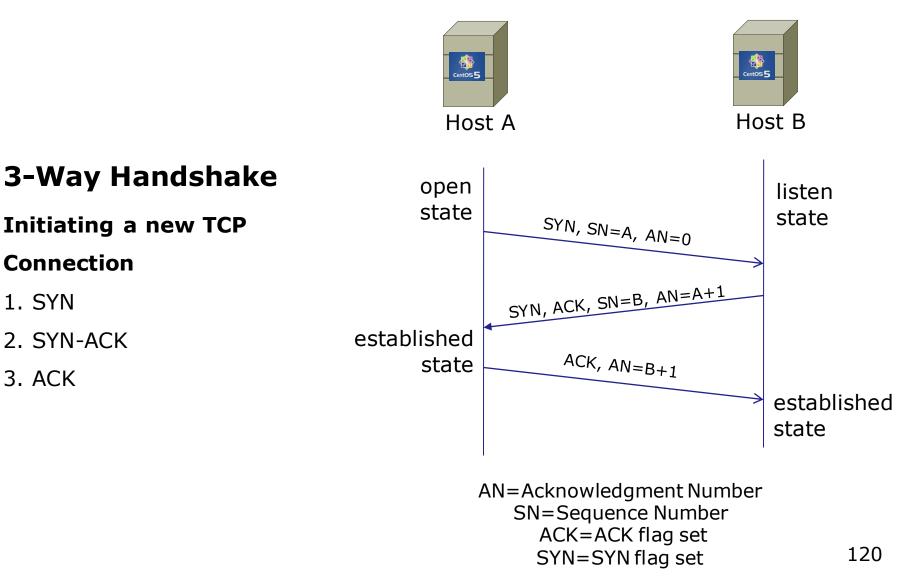
The Transmission Control Protocol

TCP Header

	 ✓ 32 Bits — 								
L									
		Source por	t						Destination port
						Se	eque	ence	e number
					Acl	kno	wlee	dge	ment number
	TCP header length		U R G	A C K	s	R S T	S Y N	F I N	Window size
Checksum Urgen				Urgent pointer					
Ţ	Options (0 or more 32-bit words)						pre 32-bit words)		
Ţ	Data (optional)								

The source and destination addresses at this level are ports

Sequence and acknowledgement numbers are used for flow control.


ACK, SYN and FIN flags are used for initiating connections, acknowledging data received and terminating connections

Window size is used to communicate buffer size of recipient.

Options like SACK permit selective acknowledgement

Transport Layer

Transport Layer

Sockets

Sockets are communication endpoints which define a network connection between two computers (RFC 793).

- Source IP address
- Source port number

- Destination IP address
- Destination port number

The socket is associated with a port number so that the TCP layer can identify the application to send data to.

Application programs can read and write to a socket just like they do with files.

Transport Layer

The Transmission Control Protocol (TCP)

Continuing communications on an established connection

o The Sliding Window

Used for flow control - allows sending additional segments before an acknowledgement is received based on recipients buffer size

o Flow Control (cumulative acknowledgment)

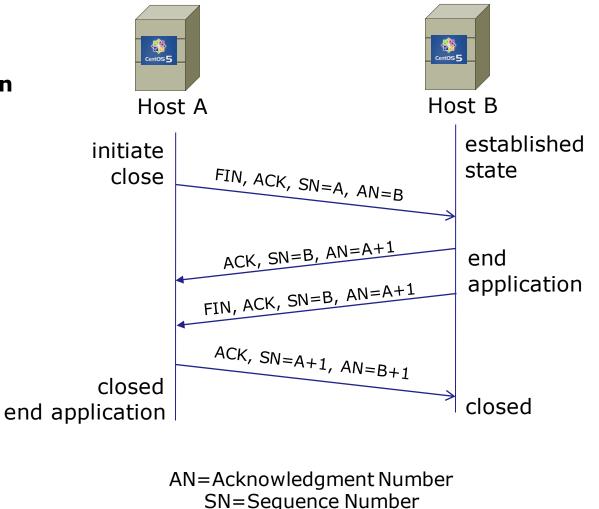
Recipient tells sender the size of its input buffer and sends acknowledgements (ACKs) when data has been received. Sequence numbers are used to detect missing segments.

o The SACK option

Selective acknowledgement so only the dropped segments need to be retransmitted.

o The RST Flag

Used to terminate a connection when an abnormal situation happens


Transport Layer

Closing a TCP Connection

Four-Way Handshake

- 1. FIN, ACK
- 2. ACK
- 3. FIN, ACK
- 4. ACK

Closing with a shorter three-way handshake is also possible, where the Host A sends a FIN and Host B replies with a FIN & ACK (combining two steps into one) and Host A replies with an ACK.

ACK=ACK flag set FIN=FIN flag set

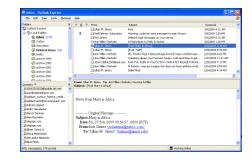
Application Layer

OSI and TCP/IP Models

	OSI Model		TCP/IP Model	
	7. Application	HTTP, FTP,		Data
	6. Presentation	SMTP, SSH, SSL, POP3,	Application	
	5. Session	Telnet		
Layer 4	4. Transport	TCP, UDP	Transport	Segments
Layer 3	3. Network	IP, IPsec, ICMP, ARP	Internet	Packets
Layer 2	2. Data Link	PPP, ATM,	Network	Frames
Layer 1	1. Physical	Ethernet, 802.11 DSL, ISDN, RS-232	Access	Bits

Open Systems Interconnection model Model used to build the Internet

Application Layer


Applications

Examples:

- Web servers
- FTP servers
- SSH daemon
- Telnet server
- Mail servers

192.168.0.1 - PuTTY		x
	ain Menu	
Getting Started	Advanced Management	
2. WAN Setup		
LAN Setup	23. System Password	
	24. System Maintenance	
Advanced Applications		
 Remote Node Setup Static Routing Setup 		
12. Static Routing Setup 15. SUA Server Setup		
15. SOM Server Secup		
	99. Exit	
Enter Menu	Selection Number:	

Application Layer

Responsibilities of Applications

Network connections, routing, and transfer of data are all taken care of by the lower layers of the protocol stack. What must applications do?

- Authenticate users
- Control access
- Log important information
- Format data (compress/encrypt)
- Provide whatever functionality is desired.

Application Layer

The Client-Server Model

Clients

Programs that are generally run on demand, and initiate the network connection to the server. Examples: telnet, ftp, ssh, browsers, email clients.

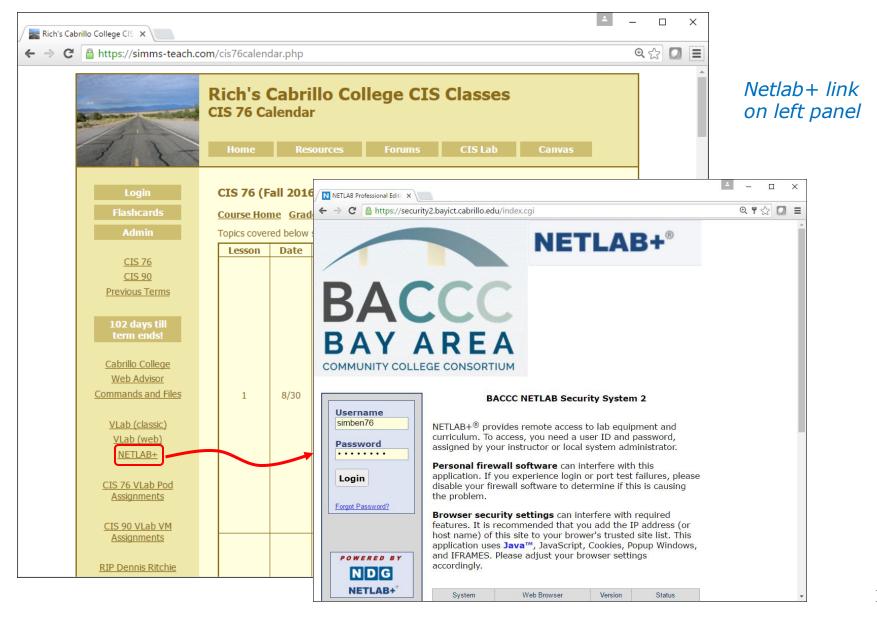
Servers

Programs (services/daemons) that are constantly running in the background waiting for client connections.

- Services and Ports: /etc/services
- Architecture:
 - Direct or iterative servers listen to a particular port and directly responds to requests
 - Indirect or concurrent servers (e.g. super daemons) listen to a particular port and then starts up another server program to process the request

Service Ports

Last week we talked about Layer 4 ports. Ports are used to direct requests to the appropriate service/application


< snipped >

21 is registered to ftp, but also used by fsp

<u>ر</u>	1,	1 1	
ftp	21/tcp		
ftp	21/udp	fsp fspd	
ssh	22/tcp		# SSH Remote Login Protocol
ssh	22/udp		# SSH Remote Login Protocol
<mark>telnet 🛛 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘</mark>	23/tcp		
telnet	23/udp		
# 24 - priva	te mail system		
lmtp	24/tcp		# LMTP Mail Delivery
lmtp	24/udp		# LMTP Mail Delivery
smtp	25/tcp	mail	
smtp	25/udp	mail	
< snipped >			
domain	53/tcp		# name-domain server
domain	53/udp		
whois++	63/tcp		
whois++	63/udp		
bootps	67/tcp		# BOOTP server
bootps	67/udp		
bootpc	68/tcp	dhcpc	# BOOTP client
bootpc	68/udp	dhcpc	
tftp	69/tcp		
tftp	69/udp		
finger	79/tcp		
finger	79/udp		
http	80/tcp	www www-http	# WorldWideWeb HTTP
http	80/udp	www www-http	<pre># HyperText Transfer Protocol</pre>
kerberos	88/tcp	kerberos5 krb5	# Kerberos v5
< snipped >			

Assignment

Lab Assignments

CIS 76 - Lesson 2

Pearls of Wisdom:

- Don't wait till the last minute to start.
- The *slower* you go the *sooner* you will be finished.
- A few minutes reading the forum can save you hour(s).

- Line up materials, references, equipment, and software ahead of time.
- It's best if you fully understand each step as you do it. Refer back to lesson slides to understand the commands you are using.
- Use Google for trouble-shooting and looking up supplemental info.
- Keep a growing cheat sheet of commands and examples.
- Study groups are very productive and beneficial.
- Use the forum to collaborate, ask questions, get clarifications, and share tips you learned while doing a lab.
- Plan for things to go wrong and give yourself time to ask questions and get answers.
- Late work is not accepted so submit what you have for partial credit.

Wrap up

Next Class

Assignment: Check the Calendar Page on the web site to see what is due next week.

Quiz questions for next class:

- What standard port is used for HTTP?
- How many bits make up an IPv6 address?
- True or false: UDP is a connectionless protocol?

Backup