

Lab 5: Managing Files

The goal of this lab is to become proficient with system commands for copying, moving,

renaming, creating and removing files within your home directory.

Preparation

Everything you need to do this lab can be found in the Lesson 6 materials at: http://simms-

teach.com/cis90calendar.php. Review carefully all Lesson 6 slides, even those that may not

have been covered in class.

Check the CIS 90 forum at: http://oslab.cis.cabrillo.edu/forum/ for any tips and updates

related to this lab. The forum is also a good place to ask questions if you get stuck or help

others.

If you would like some additional assistance come to the CIS Lab on campus where you can

get help from instructors and student lab assistants: http://webhawks.org/~cislab/.

Procedure

Log on to the Opus server so that you have a command line shell at your service. Be sure

you are in your home directory to start this lab. We are going to reorganize the files in our

home directory. This will involve making new subdirectories and moving files around. The

questions asked during this procedure are for your clarification only. You will be graded on

correctly performing the procedure. At the end of the lab you will submit your work using

the submit command.

Part I - Making Directories

1. Display a listing of the files in your home directory using the ls -F command.

2. Now let's make some new directories using the mkdir command:

 Make a new directory named edits for keeping our file edits using the

following command:

mkdir edits

 View the new directory's contents using the -a option of the ls command. Do

you see the two hidden files that were created with the directory?

http://simms-teach.com/cis90calendar.php
http://simms-teach.com/cis90calendar.php
http://oslab.cis.cabrillo.edu/forum/
http://webhawks.org/~cislab/

 You can make more than one new directory at a time by supplying two

arguments to the mkdir command. Make two new directories, one called docs

the other called etc

 Verify that they were made in your home directory.

3. Now try to make a subdirectory in a directory that doesn't yet exist by entering the

following command:

mkdir class/labs

What happens? Try the same command using the -p option:

mkdir -p class/labs

Verify that it worked this time.

4. Now that the class directory is made, you can make a second subdirectory

called tests. Use the command: mkdir class/tests

Notice how you did not need the -p option. Why not?

Part II - Renaming Files

Now that you have new subdirectories made, let's rename some of the existing directories.

To do this, we use the mv command.

1. Let's rename the Miscellaneous directory to just plain old misc.

mv Miscellaneous misc

Notice how the syntax is: mv <original-name> <new-name>

Does it work?

2. Use the same command to change the name of Poems to poems with a lowercase p.

3. You can also rename a file using the same command. Unix doesn't distinguish

between renaming directories and renaming ordinary files. Try renaming proposal1

to MarkTwain. Did it work?

Part III - Moving Files

Now we will actually move some files from one directory to another, renaming some of them

as we do it.

1. To move a file from one directory to another, we use the same syntax:

mv <filename> <directory>

The filename will be moved to the specified directory, keeping its same name. Let's

try it: Use the ls -i command to look at the inode number of MarkTwain

Now move that file to the docs directory we made earlier:

mv MarkTwain docs

2. Change directory to the docs directory and look at the inode number of MarkTwain

What do you notice? The inode number is the same; the file hasn't moved, only the

name has been moved from one directory to another.

3. Now change back to your home directory, and let's move proposal2 into the docs

directory and change its name to magna_carta at the same time.

mv proposal2 docs/magna_carta

By specifying a new name after the destination directory, we can rename the file at

the same time we move it.

4. See if you can do the same thing by moving the file, timecal, to your bin

subdirectory and renaming it to datecal.

(Make sure you are in your home directory.)

5. Move proposal3 to the docs directory renaming it to policy.

6. Now let's put a couple commands together to accomplish the following task:

 Change directories to your poems subdirectory.

 Make a new subdirectory called Anon, (for Anonymous).

 Move the three files, ant, nursery, and twister into that new directory.

 Verify that you have done this, and change directory back to your home

directory.

7. Good job! Did you try using one mv command for all three files?

You can. The mv command has a third syntax:

mv <file1> <file2> <file3> ... <fileN> <directory>

The last argument must be a directory name, and all the preceding files will be

moved into that directory - keeping their original names. Let's try it. Move the files:

text.err, text.fxd, small_town, and spellk into the edits directory using the

command:

mv text.* small_town spellk edits

Check the results by listing the contents of the edits directory. Pretty fancy?

8. What happens when you move a file onto a file that already exists?

Let's try it. Enter the command: ls -l letter bigfile

Notice the sizes of the two files. (You may want to head them to remind you what

they are.)

9. Now move letter onto bigfile by entering:

mv letter bigfile

Did you get any error message? Any kind of message?

10. Look at bigfile now. How big is it? What are its contents?

Don't worry; we'll get bigfile back later.

Move bigfile back to letter

11. Now try doing the following moves:

 Move what_am_i to the misc directory, keeping the same name.

 Move mission to the etc directory, changing its name to motd

 Don't panic on this one, but try moving the file better_town, which is in the misc

directory to the edits directory, keeping the same name.

Part IV - Copying Files

Copying works just like moving except that a second file is created, the contents of which is

exactly like the original.

1. Copying files is useful for making backup copies. Let's make a backup of your letter

file by typing the following command:

cp letter letter.bak

Notice that it has the same syntax as the mv command, but now you have two files.

Run the ls -li command with arguments of letter and letter.bak

Notice the sizes are the same, but they each have their own inode and their own

data.

2. Another reason to use the cp command is to copy a file from somewhere else on the

system to your directory. In this case, the filename stays the same, but the second

argument is a new directory into which we put the file. Try it with:

cp /etc/hosts etc

You have just copied the file hosts from root's /etc directory to your own personal etc

directory. Verify that the file is in your etc directory.

3. Copy your graded labs into your class/labs directory with the command:

cp lab0?.* class/labs

What does the question mark (?) and asterisk (*) do?

4. Now use the cp command to copy the file sonnet6 from /home/cis90/depot directory

to your Shakespeare directory. (Notice that your Shakespeare directory doesn't have

a sonnet6 in it.)

5. Like the mv command, the cp command is also destructive. If the target file exists,

it will be destroyed, and copied over. If you want the cp command to warn you

about destroying a target file, then you must use the -i option. Try this in your home

directory:

cp -i letter letter.bak

Notice how it asked you whether you wanted to overwrite the letter.bak file.

6. The cp command may also be used to copy multiple files to a single directory in the

same way you used the mv command.

More useful is copying an entire directory. Let's copy the entire Shakespeare

directory to a directory called Sonnets.

First, cd to your poems directory. Now issue the following command:

cp -r Shakespeare Sonnets

Verify that it worked using the command: ls S*

(the -r stands for recursive.)

Part V - Removing Files and Directories

Removing files is inherently destructive in nature. Unix does not give any warnings or

opportunity to un-remove a file. So be careful in using this command.

1. Make sure you are back in your home directory. What command did you use?

2. The remove command is dangerous in it's simplicity. It takes one or more filenames

as arguments. Try removing your empty file with the command:

rm empty

Try listing the file; it's gone - for good - no warning - poof.

3. If you would like the remove command to ask you if you're sure, use the -i option.

Try:

rm -i letter.bak

answer with anything but a 'y' or 'yes' and it will not remove the file. Go ahead and

remove it.

4. For some fun, change your directory to Lab2.0 and run the ls command.

 Now run the command: rm *.*

 What was removed? Is it like DOS?

 Try removing the file annual report

 Do you see why spaces in file names is not a good idea? How could you remove

that file?

 Finally, try this command: rm -i *

 Answer y to all questions. Are all the files gone? Change back to your home

directory.

5. From your home directory, try to remove the directory, Lab2.0

The remove command doesn't work on directory files. For that we have the rmdir

command. Try it:

rmdir Lab2.0

Why didn't it work?

6. List the entire contents of the Lab2.0 directory using the ls -a command.

Remove the hidden file .junk, and then try the rmdir command again.

7. The lesson here is that rmdir removes only empty directories. There is a way to

remove an entire directory and its contents. This is obviously a very dangerous

command. From your home directory, run the following command:

rm -r Lab2.1

Notice that the directory and all its contents are gone, no warnings.

Be careful when using this recursive option to the rm command.

8. Remove your Sonnets directory and its contents.

Part VI - Linking Files

Linking files is a way of giving additional names to an existing file. You are not duplicating

data, just adding another name into your directory.

1. I told you I would get your bigfile back for you. The file can be found in the

/home/cis90/depot directory. Rather than copying it from there, let's do a hard link

to it. Use the following commands from your home directory:

ls -l ../depot/bigfile

2. Notice the link count field, the owner and the size of the file. Now enter:

ln ../depot/bigfile .

You have just made a link to bigfile in your home directory. Do a long listing of

bigfile. What is the link count now? Who owns it?

You now have access to rsimms' bigfile, as if it is in your directory.

3. Change directory to your etc directory and link the motd to the name greeting. Use

the ln and the filenames as the two arguments. Use the ls -li command to verify

your success.

Submittal

You have now finished Lab 5. Your home directory is now reorganized. To submit your work

to be counted for this lab, you must run the submit command from your home directory.

This will take a snapshot of your home directory and send it to your instructor.

Grading Rubric (30 points total)

30 points for successfully completing all steps

Less 1 point for each step not completed correctly

Remember, no credit for late work!

