

CIS 90 Final Project

Developing a bash script
Spring 2009

Final Project

For the final project you will be writing custom front-ends to your favorite Linux commands.
To do this you will write a shell script that interacts with the user to get input, then use that
input to call a Linux command. You will start with a template that you can modify and
extend.

Forum

Use the forum to brainstorm script ideas, clarify requirements, and get help if you are stuck.
When you have tested your script and think it is bug free then use the forum to ask others
to test it some more. Post any valuable tips or lessons learned as well. Forum is at:
http://simms-teach.com/forum/viewforum.php?f=13

Commands

. echo lpstat sort
at env ls spell
banner exit mail su
bash export man tail
bc file mesg tee
cal find mkdir touch
cancel finger more type
cat grep mv umask
cd head passwd uname
chgrp history ps unset
chmod id pwd vi
chown jobs rm wc
clear kill rmdir who
cp ln set write
date lp/lpr sleep xxd

Commands by Categories

Type Commands

Simple: banner, date, cal, finger, uname, type, ls, cd, pwd,
hostname

Status: jobs, ps, who, id, env, lpstat, umask, mesg, history, tty

File: file, cp, mv, ln, rm, rmdir, mkdir, touch, chmod, chgrp,
xxd, head, tail

Filters: cat, sort, spell, grep, wc, tee

Misc: bc, mail, vi, lp, cancel, at, kill, find, passwd

The Template

#!/bin/bash

menu: A simple menu template

while true
do
 clear
 echo -n "
 CIS 90 Final Project
 1) Task 1
 2) Task 2
 3) Task 3
 4) Task 4
 5) Task 5
 6) Exit

 Enter Your Choice: "
 read RESPONSE
 case $RESPONSE in
 1) # Commands for Task 1
 ;;
 2) # Commands for Task 2
 ;;
 3) # Commands for Task 3
 ;;
 4) # Commands for Task 4
 ;;
 5) # Commands for Task 5
 ;;
 6) exit 0
 ;;
 *) echo "Please enter a number between 1 and 6"
 ;;
 esac
 echo -n "Hit the Enter key to return to menu "
 read dummy
done

Procedure

Copy the template text to a file in your own bin directory named myscript. Give the file
execute permission for everyone. You will run your script by entering its name on the
command line just as you do with any other Linux command.

Choose five commands you would like to develop a custom front-end user interface for. For
each choice add a menu option and then develop the appropriate case statement. Expand
the case statement with commands to query the user for input, then use that input for
calling your command.

Each command front-end that you implement should include:

• User dialog to prompt the user for input
• Use variables to save the input
• Execute one or more commands using the variables as the options or arguments.

Make your script can run by itself and run from allscripts which is in the /home/cis90/bin
directory. You also need to set permissions so that everyone in the cis90 group can read
and execute your script.

When finished, you will need to test your script. It is always helpful to have others test
your work. Developers can’t always imagine all the creative ways users will use their
products. Use the forum to solicit feedback after you have finished your own testing. This
is a good way to check your script can be run by others in the cis90 group.

You can use any development method you wish. With the waterfall method you start by
identifying high level requirements, then write a functional specification, then do a design,
then code, then do unit testing of individual pieces, then do system testing of the whole
product. The idea is to delay coding until you have thought everything through first. With
evolutionary delivery you start small with a working initial version of the project and then do
rapid evolutions of mini-waterfalls (design-code-test) to iteratively add new functionality.
Another method is to do rapid prototyping to flesh out the design, and then use a waterfall
method to build it. The evolutionary method would be ideal for a small project like this.
Good old “hacking” is a blend of rapid-prototyping and evolutionary delivery.

Tips

• Run allscripts to see some examples of what Duke and Benji developed.
• Duke’s work on the front-end to the find command is a good example of what is

expected. However Duke has more work to do when he gets back from playing fetch
as not all five tasks are completed.

• Benji went a tad overboard on his tasks. He must been thinking he would get
chicken treats. You don’t have to do as much as Benji did but you might get some
ideas from viewing his work. His script also has many examples of how to do
conditionals for other students wanting to go over the top.

• Use vi to look at Duke and Benji’s scripts in their bin directories. vi adds color to
make the commands easier to read.

• Save earlier versions of your work. You can easily do this by copying myscript to
myscript.v1, myscript.v2, etc. to backup each version.

Shell scripting topic ideas

An easier to user find command

View the File System

• Show files at the root (/) directory
• Show files in user's home directory
• Show files in the parent directory
• Show files in a specified directory

Tally Files

• Tally the number of directories from a given starting point
• Tally the number of symbolic links from a given starting point
• Tally the number of text files from a given starting point
• Tally the number of shell scripts from a given starting point
• Tally the number of data files from a given starting point
• Tally the number of symbolic links from a given starting point
• Draw a histogram showing the relative numbers of different file types

Search for files

• Search for a file by name
• Search for a file by inode number
• Search for a file by owner
• Search for a file by size
• Search for files that have been modified recently
• Search for files that contain a certain string of characters

View files

• Select a file for viewing
• View the entire file allowing paging through the file
• View a file in hexadecimal format
• View the top 20 lines of a file
• View the bottom 20 lines of a file

Process status

• Show just system processes
• Show processes belonging to a particular user
• Show any defunct processes
• Show all processes

To turn in

Copy your final version of myscript as follows:

cp myscript /home/rsimms/cis90/myscript.$LOGNAME

Grading rubric (60 points maximum)

Possible Points Requirements
30 Implementing all five tasks (6 points each):

• Requirements for each task:
‒ Minimum of 10 script command lines
‒ Has comments to explain what it does
‒ Has user interaction

25 You don’t have to do all of these but do at least five:
• Redirecting stdin (5 points)
• Redirecting stdout (5 points)
• Redirecting stderr (5 points)
• Use of permissions (5 points)
• Use of filename expansion characters (5 points)
• Use of absolute path (5 points)
• Use of relative path (5 points)
• Use of a PID (5 points)
• Use of inodes (5 points)
• Use of links (5 points)
• Use of a GID or group (5 points)
• Use of a UID or user (5 points)
• Use of a signal (5 points)
• Use of piping (5 points)
• Use of an environment variable (5 points)
• Use of a comment (5 points)
• Use of /bin/mail (5 points)
• Use of a conditional (5 points)

The maximum for this section are 25 points.

5 Present your script in front of the class

Points lost
-15 Fails to run from /home/cis90/bin/allscripts
-15 The other users in the cis90 group are unable to read and

execute your script.
-5 For each error message displayed

Extra credit
30 Up to three additional tasks (10 points each)

