=

What is Bash Shell Scripting?

A shell script is a script written for the shell, or command
line interpreter, of an operating system.

The shell is often considered a simple domain-specific
programming language.

Typical operations performed by shell scripts include file
manipulation, program execution, and printing text.

/ 7

What is Bash Shell Scripting?

Bash Shell Script is an interpreted language. This
means that the shell analyzes each statement in the
language one line at a time, then executes it. This
differs from languages such as C, in which programs
are compiled into executable files.

Interpreted languages are generally easier to debug
and modify; however, they usually take much longer to
execute than compiled programs.

e

About My Shell Script

My program is a simple network monitoring script that acts
as wrapper for the ping command.

[t takes and IP address or multiple IP addresses as
arguments, creates a log file of ping statistics, and outputs
the connection status of the host.

[intended to use it for lab 4, to monitor the time it took for
dynamic routing to reroute network traffic when a node is
taken down.

/ '

Special Shell Variables

$0 The name of the program is assigned here.

$1 - $9 The arguments typed on the command line
are assigned here.

${10} Any argument after $9 must be accessed
using curly braces.

e

Special Shell Variables

$# Number of arguments passed to the program or
number of parameters set by executing the set
statement.

$* Collectively references all positional parameters as
ST §2

$@ Same as $* except when double quoted; collectively
references all positional parameters as “$1”, “$2”, ...

e

Special Shell Variables

$? Exit status of the last command not executed in
the background.

$! The process ID number of the last program sent to
the background for execution.

$$ The process ID number of the program being
executed.

/ .

Special Shell Variables

(()) Arithmetic operator; parses faster, only
accepts numeric input.

] Idiomatic operator; shell built in, older and
slower, accepts alpha-numeric input.

Version 1.0

Let's have a look at my original code.

Improvements

Version 1.0

#!/bin/bash

#

Monitor: a script to monitor the connection
status of one or more IP addresses

Author Sean Callahan & Solomon Bundy

IP=
COUNT="-c1"
INTERVAL="-i 1"

EMSG="[-i interval] [-c count] [-b run in bg] [--help] <IPaddress> <IPaddress>"

if ["$#" -eq o] #Test for no args
then

echo "$EMSG"

exit o
fi

TEST=$(echo "$@" | grep *--helps) #Test for --help
if ["$?" -eq o]

then

echo "$EMSG"

exit 1
fi

Version 1.1

#!/bin/bash

#

Monitor: a script to monitor the connection
status of one or more IP addresses

Author Sean Callahan & Solomon Bundy

_ip=
_count="-c1"
_interval="-11"

_emsg="[-i interval] [-c count] [--help] <IPaddress> <IPaddress>"

if ("$#"==0)) #Test for no args
then

echo "$_emsg"

exit o

fi

echo "$@" | grep -q '"--helps' #Test for --help
if (("$?"==0))

then

echo "$_emsg"

exit 1
fi

More Improvements

Version 1.1

Version 1.0

while ["s$#" -gt o] #Start main loop

do

TEST2=$(echo "$1" | grep -c$) #grep for option -c
if ["$?" -eq o]
then
COUNT="$1 $2" #Assign positional parameter $1 and $2 to COUNT
shift
shift
else
TEST3=$(echo "$1" | grep ~-c[o-9]) #grep for option -c w/ space
if["$?" -eq o]
then
COUNT="$1" #Assign positional parameter $1 to COUNT
shift
fi
fi

while (("$#">0))

do

echo "$1" | grep -q 'A-c$’

#Start main loop

#grep for option -c

#Assign positional parameter $1and $2 to _count

echo "$1" | grep -q '"-c[o-9]' #grep for option -c w/ space

if (("$?"==0))
then
_count="$1 $2“
shift
shift
else
if (("$?"==0))
then
_count="$1“
shift
fi
fi

#Assign positional parameter $1 to _count

More Improvements

Version 1.0 Version 1.1
set "$@" #Set all args (only IP addresses should be left at this point) set "$@” #Set all args (only IP addresses should be left at this point)
echo "$1" | grep -E -0 -q '(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0- echo "$1" | grep -E -0 -q '(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-
5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5] |2[0-4][0-9]|[01]?[0- 5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5] |2[0-4][0-9]|[01]?[0-
9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)’ 9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)*
#Above line greps for a valid IP address #Above line greps for a valid IP address
if ["$?" -ne o] if (("$?"1=0))
then then
echo "INVALID IP SKIPPING..." echo "INVALID IP SKIPPING..."
shift shift
continue continue
else else
IP="$1" _ip="$1"
shift shift

fi fi

//\/

GREP Options

echo "$1" | grep -E -0 -q '(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.

-E Extend regular expression.
-0 Only matching
-q Quiet mode

/
mapression To Rule

Them All

echo "$1" | grep -E -0 -q '(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.

The | is the alternation operator. Since the alternation operator has the
lowest precedence of all, we use the round brackets to group the
alternatives together. The ? makes the preceding item optional. The \ is an
escape character.

The expression will first test 250 -255.

If this fails, it will look for the next set of numbers, 200 -249. If this fails, it
will look for 100 - 199, then 0-99.

If successful, it will return o, and test the next set of numbers in the
expression. If nothing is found, it will return 1, and stop.

More Improvements

Version 1.0

ping "$COUNT" "$SINTERVAL" "$IP" 1> $IP.log #Create a log file of ping output
echo "Monitoring "$IP" "
PING=$(ping "sCOUNT" "SINTERVAL" "$IP" | grep 'received' | awk -F',' { print $2 }' |

awk '{ print $1}') #Check ping status

if ["$PING" -eq o]
then

echo "Host : $IP is down (ping failed) at $(date)"
else

echo "Host : $IP is up (ping succeeded at $(date)"
fi

done

exit o

Version 1.1

echo s(date) >>"s_ip".log

wo non

ping "-W 3" "$_count" "$_interval" "$_ip" >>"$_ip".log #Create a log file of ping output

echo"">>"$_ip".log

"o

echo "Monitoring "$_ip

non non

_result=$(ping "-W 3
}' | awk '{ print $1}')
if (("$_result"==0))
then
echo "Host : "$_ip" is down (ping failed) at $(date)"

$_count” "$_interval" "$_ip" | grep 'received' | awk -F',"'{ print $2

#Check ping status

else
echo "Host : "$_ip" is up (ping succeeded) at $(date)"
fi

done

exit o

What’s Next?

Utilize the /etc/hosts file to allow users to type in host
names as well as IP addresses.

Separate the regular expression and ping code into their
own loops, so that the program won't scan for all of the
options every time it loops.

Include an option for the program to run silently in the
background, and only bring itself into the foreground
when a ping is successful.

C:\Depot\data-my-cis192\students\Extra Credit\imonitor-script-callahan.txt Wednesday, May 01, 2013 11:51 AM

#1/bin/bash

#

Monitor: a script to monitor the connection
status of one or more IPaddresses

Author Sean Callahan & Solomon Bundy

_ip=

_count="-c 1"

_interval="-1 1"

_emsg=""[-1 interval] [-c count] [--help] <IPaddress> <lIPaddress>"

it (('$#"'==0)) # Test for no args
then
echo "'$_emsg"”
exit O
fi
echo "$@" | grep -q "~--help$” # Test for --help
it (("$7"'==0))
then
echo "'$_emsg"”
exit 1
fi
while (('$#">0)) # Start main loop
do
echo "$1" | grep -q ""-c$” # grep for option -c
it (("$?7"==0))
then
_count=""$1 $2" # Assign positional parameter $1 and $2 to _count
shift
shift
else
echo "$1" | grep -q "~-c[0-9]" # grep for option -c w/ space
it (("$7"'==0))
then
_count=""%$1" # Assign positional parameter $1 to _count
shift
fi
fi
echo "$1" | grep -q ""-i%”" # Grep for option -i
it (("$7"'==0))
then
_interval="3$1 $2" # Assign positional parameter $1 and $2 to _interval
shift
shift
else
echo "$1" | grep -q "~-i1[0-9]" # grep for option -i w/ space
it (("$7"==0))
then
_interval="$1" # Assign positional parameter $1 and $2 to _interval
shift

i

C:\Depot\data-my-cis192\students\Extra Credit\imonitor-script-callahan.txt Wednesday, May 01, 2013 11:51 AM
Ti
set "$@" # Set all args (only IPaddresses should be left at this
point)

echo "$1" | grep -E -0 -q
"(25[0-5]12[0-4]1[0-9]1]1[01]1?[0-9]1[0-91?)\.(25[0-5]]2[0-4][0-9]11[01]1?[0-9]1[0-9]?)\.(25[0-5]]2[O
-471[0-971[01]1?[0-9][0-91?)\.(25[0-5]]2[0-4]1[0-9]1|[01]?[0-9]1[0-9]?"

#Above line greps for a valid IPaddress
it (("$771=0))

then
echo "INVALID IP SKIPPING..."
shift
continue
else
_ip="sl
shift
fi
echo $(date) >> "$ ip".log
ping ""-W 3" "$ count™ "$ interval'™ "$ ip"” >> "$ ip”.log #Create a log file of ping
output
echo " " >> "$ ip".log

echo "Monitoring "$ ip" "

_result=$(ping "-W 3" "$_ip" | grep “received® | awk -F*," “{ print $2 }* | awk "{ print $1

}") #Check ping status
it (("$_result"==0))

then
echo "Host : "$ ip" is down (ping failed) at $(date)"
else
echo "Host : "$ ip" is up (ping succeeded at $(date)"
fi
done
exit O

