
Leveraging Twitter To Manipulate Social Views
CIS 76

Jesse Warren

Quick Activity Slide
In the Confer chat, tell me how well you can hear me!

1 if you didn’t realize I was talking
to 10 if you can hear my voice perfectly

Use the “confused” or “slower” Confer emotions if I go too fast during the presentation.

Table of Contents
1. Social Media Influencing Today
2. Meet Our Actors
3. Keyword Propagation in Action
4. Introductions to Python 3

Conditional Statements & Functions
Data Structures & Comprehension
Understanding Class Scope
Importing & Using Modules
File Object Methods
System Errors & Handling Exceptions

5. The Mancipium Avem Code
6. Nefarious Ethical Implementation

Social Media Influencing Today

Quick Activity Slide

After you finish watching https://goo.gl/k75cMo, raise your e-hand in Confer!

Social Media Influencing Today

https://goo.gl/k75cMo
http://www.youtube.com/watch?v=fPc1fdCAHKo

http://comprop.oii.ox.ac.uk/wp-content/uploads/sites/89/2017/06/Comprop-USA.pdf

The Full Report

http://comprop.oii.ox.ac.uk/wp-content/uploads/sites/89/2017/06/Comprop-USA.pdf

How Influence Works

If you’ve ever done sales, you’ve learned how to influence. Purporting scarcity,
understanding social proof, linking authorities… everything you learned that helps

you secure a sale can be altered to play a role in media manipulation.

If an account tweets “Pet owners abandon their pets.”, they’ll be written as crazy.
If they add a sense of anxiety, third-party references, and then psychological relief

(as we’ll see in the demo)... they may convince actual people to retweet.

Once REAL people are retweeting, a “trusted source” is in play and will begin to
spread the misinformation much faster throughout the social media-sphere.

Social Media Influencing Today Too fast? Use the “slower” Confer emotion!

Keyword Propagation In Action

Keyword Propagation In Action

The bot that we’ll be using is able to do
three twitter “actions”: retweet,
comment, and reply.

Once it receives an encoded tweet that
“commands” it to do one of those things,
it runs its code and completes the task.

The upcoming demonstration will show
the bot in action (without going into the
code yet), by using a non-political article
from The Onion.

Too fast? Use the “slower” Confer emotion!

Boris’ objective is to misinform the masses with this fake news story!
We’ll be politically neutral in our demo to keep the topic on technology!

Quick Activity Slide

After you finish reading the article at https://goo.gl/ssYQVc, raise your e-hand in Confer!

And remember...

https://goo.gl/ssYQVc

Dudley @EH_ZweiZahl
Our story’s hero, honest but gullible.

Motive: Spread news that seems believable to his friends and family.

Mancipium Avem @cis_76
Our resident Twitter Bot, coded by the evil villain Boris.

Motive: Listen to Boris for encoded commands and try to gain followers.

Boris @EH_EinsZahl
Our story’s villain, with an evil agenda to spread lies and deceit.

Motive: Attempt to spread misinformation to as many people as possible.

Natasha @EH_DreiZahl
You may expect her to be a villain, but for this she is not!

Motive: Enjoy the Twitter-sphere and socialize with friends from school.

Nell @EH_VierZahl
Dudley’s friend, with red hair and a dress.

Motive: Follow accounts that talk about horses.

Quick Activity Slide
In the Confer chat, tell me who you think is spreading the fake news articles.

(Nell? Dudley? Natasha? Boris? Avem?)

Also, who do you think they’re trying to influence?
(Avem? Natasha? Boris? Dudley? Nell?)

First,

Boris tweets the initial article, plus an
encoded tweet for the bot to react to.

Remember, Boris’ objective is to have
this article spread, so he uses some
psychological tactics to increase the
likelihood of an interested party following
the link (and thus, potentially spreading
the misinformation to other accounts).

Then,

Avem, our bot, reacts to the tweet. In
this case, Boris decided to start with a
reply.

It doesn’t link to the tweet or URL itself,
but provides backing to a “developed
story” when the bot tries to spread the
article later in the day.

Second,

Boris tweets the same link, seemingly in
response to Avem’s reply. This time, he
deepens the sense of anxiety and
encodes a command to have the bot
comment on this.

Now, anyone who follows the bot will
see an alarming “fact” on their feed.

Too fast? Use the “slower” Confer emotion!

Then,

Avem comments on this, allowing the
misinformation to be clearly seen in the
tweet.

This way, any of the bot’s followers
viewing their feed will see this rather
horrifying piece of “information”.

This is seen,

When Dudley, following Avem, retweets
the article itself!

This is exactly what Boris wants to
happen…

With Nell commenting, the
misinformation starts to spread.

Then,

Natasha comments on Dudley’s post,
which opens her followers to the
misinformation.

Nell interacts with this post as well,
increasing the “authenticity” of the story.

Then,

Nell decides to comment on it as well!

Just a social interaction amongst friends,
but the more they talk like they believe
the article, the more the followers
watching this unfold on their feed will
believe it without fact-checking it all
themselves!

Finally,

Boris concludes with a bit of “good
news”, without the link.

This provides a sense of relief, and also
acts as a lure for others who may only
see this part of the story to explore the
feed and find the rest.

Too fast? Use the “slower” Confer emotion!

Avem sends the final retweet and the
misinformation campaign ends.

Only several minutes of work required,
and yet the news article can potentially
be passed around for days, or even
weeks.

The more people that spread it, the more
believable it becomes.

Quick Activity Slide
Raise your e-hand in Confer if you’ve ever seen this happen on social media.

Type “just realized” in the Confer chat if you only realized just now that you have.

Avem Demonstration - Behind the Scenes

(Another) Quick Activity Slide
Avem, our lovely bot, is written in Python.

Take a ten second stretch, a sip of your drink, and let’s move on to the code!

Raise your e-hand in Confer if you’ve heard of the Python programming language.

If you’ve used Python before, tell me in the Confer chat!

Conditional Statements & Functions
Introduction to Python 3

current_value = int(input('integer: '));

if current_value <= 40:
 print('Current value is less than or equal to 40.');
elif current_value < 180:
 print('Current value is less than 180, but more than 40.');
else:
 print('Current value is greater than or equal to 180.');

integer: 117
Current value is less than 180, but more than 40.

Introduction to Python 3

the IF conditional
statement runs the code
beneath it if True.

in this case, IF
current_value is less
than or equal to 40.

ELIF (else if) it is
not, we check if it is
at least less than 180.

ELSE all other options,
we will run this code.

current_values = [1, 2, 3, 10, 19];

for item in current_values:
 print('This value is {0}'.format(item));

This value is 1
This value is 2
This value is 3
This value is 10
This value is 19

Introduction to Python 3

the FOR conditional
statement runs the code
beneath it once for
each item in a
specified list.

in this case, FOR loops
through the items of
current_values.

the code prints out the
value of each item.

once the FOR loop is
complete, the program
continues.

def get_sum(a, b):
 print('Adding {0} with {1}'.format(a, b));
 return(a + b);

value = get_sum(17, 39);
print('The returned value was: {0}'.format(value));

Adding 17 with 39
The returned value was: 56

Introduction to Python 3

the DEF statement
defines a function
which runs the code
beneath it when the
function is called.

in this case, the
function prints the
args that it is adding,
then returns the sum.

functions can take
arguments (a and b in
this case) and can
return a value to a
variable assignment.

Too fast? Use the “slower” Confer emotion!

Data Structures & Comprehension
Introduction to Python 3

current_values = [1, 2, 3, 10, 19];

print('Value: {0}'.format(current_values[0]));
print('Value: {0}'.format(current_values[2]));
print('Value: {0}'.format(current_values[-1]));

Value: 1
Value: 3
Value: 19

Introduction to Python 3

the list data structure
is an array of values.

it can hold integers,
like current_values, or
other types (even other
lists).

list items are accessed
via the index, which
starts at [0] for the
first item in the list.

indexes can recurse,
seen by [-1] for the
last item in the list.

current_values = { 0:7, 2:15, 'strings too!':89 }

print('Value: {0}'.format(current_values[0]));
print('Value: {0}'.format(current_values[2]));
print('Value: {0}'.format(current_values['strings too!']));

Value: 7
Value: 15
Value: 89

Introduction to Python 3

the dictionary data
structure is also an
array of values.

however, unlike the
list, you specify the
index values.

in this case,
current_values[0] works
because [0] was
specified (or defined).

however,
current_values[1] would
raise an error.

big_list = [1, 2, 4, 7, 9, 23, 54, 76, 23, 37, 78, 28, 200, 284, 381,
272, 403, 120, 128, 129, 743, 291, 478, 340, 203, 403, 107, 954,
182, 85, 273, 27, 18, 59, 96, 37, 2, 7, 9, 3];

evens_list = [i for i in big_list if i % 2 == 0];
evens_list.sort();

print(events_list);

[2, 2, 4, 18, 28, 54, 76, 78, 96, 120, 128, 182, 200, 272, 284,
340, 478, 954]

Introduction to Python 3

comprehension is most
often used in lists and
dictionaries.

in this case,
evens_list uses a for
loop to pull all the
even numbers from
big_list.

modulo (%) provides an
easy way to find even
numbers and is a common
mathematics operator.

Too fast? Use the “slower” Confer emotion!

Understand Class Conventions (Scope)
Introduction to Python 3

class example_class():
 def __init__(self):
 self.level = 9000;

 def increase_value(self):
 self.level += 1;

power = example_class();
power.increase_value();

if power.level > 9000: print('Old memes.');

Old memes.

Introduction to Python 3

a class is an object
with attributed
(internal) functions
and variables.

a variable becomes one
of a class by calling
that class() at
variable assignment.

then, you can call
class.variable for
internal variables and
class.function(args)
for internal functions.

Importing & Using Modules
Introduction to Python 3

import random;
from time import sleep;

choices = [1, 2, 3, 4];
print('Random Number: {0}'.format(random.choice(choices)));
sleep(1);
print('Random Number: (0)'.format(random.choice(choices)));

Random Number: 1
Random Number: 3

Introduction to Python 3

import is used to
create objects (similar
to class objects) from
external modules.

like the class object,
modules have attributes
(mostly functions) that
can be used in lieu of
writing that function
yourself.

in this case,
random.choice(choices)
returns a random item
from the list choices.

File Object Methods
Introduction to Python 3

input_file = open('just_cats.txt', 'r').read().split('\n');

print(input_file);

['cats', 'cats', 'cats', 'cats', 'cats', 'cats', '']

output_file = open('just_dogs.txt', 'w');
output_file.write('dogs\ndogs\ndogs\ndogs\n');
output_file.close();

Introduction to Python 3

file objects are
objects with an input
and output, most
commonly text files.

they can be opened,
read, written to,
saved, and otherwise
manipulated.

they are often used to
store data in
conjunction with
modules like cPickle to
serialize the data.

Too fast? Use the “slower” Confer emotion!

Syntax Errors & Handling Exceptions
Introduction to Python 3

for i in range(10) print(i);
File "<stdin>", line 1
for i in range(10) print(i)
^
SyntaxError: invalid syntax

print(variable);
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'variable' is not defined

Introduction to Python 3

system errors occur
when something is wrong
inside the code.

SyntaxError is the most
common type of error,
and usually involves a
spelling mistake or a
forgotten closing
paren, bracket, brace,
or quotes.

however, there are
plenty of other errors
that catch potentially
fatal mistakes.

x = 0;
try:
 print(10 / x);
except Exception as e:
 print(e);

integer division or modulo by zero

Introduction to Python 3

error handling helps
keep your program
running despite any
errors it may
encounter.

it is extremely useful
for programs that users
interface with, as it
will catch their errors
and help them
understand what they
did wrong, instead of
just crashing the
program.

Too fast? Use the “slower” Confer emotion!

The Mancipium Avem Code
NAME

twitter.py -- Demo Twitter bot for CIS 76

SYNOPSIS
python3 twitter.py [-s twitter account] [-c comments.txt] [-r replies.txt]

DESCRIPTION
twitter.py listens to a specified twitter account, parsing new tweets and
looking for specific regular expressions that equate to encoded “commands”.

The options are as follows:

-s twitter account Specifies the twitter account (sans @) to listen to.
-c comments.txt Specifies the text file to pull comment responses

from.
-r replies.txt Specifies the text file to pull reply responses from.

The Mancipium Avem Code
DESCRIPTION (CONT.)

-r replies.txt Specifies the text file to pull reply responses from.
…

Other files in twitter-bot include watch-words.txt and recent-tweets.txt

watch-words.txt A list of regex searches linked to specific commands.
([pP]otatoes):retweet
([cC]i[sS]76):comment
([bB]enji):reply

Recent-tweets.txt A list of the tweets the bot has already seen.

Quick Activity Slide
[student@opus-ii]$ cat watch-words.txt
([pP]otatoes):retweet
([cC]i[sS]76):comment
([bB]enji):reply

Given the file above, if you ran python3 twitter.py and find the tweet “Potatoes are great!”, what will it do?
Let me know what you think in the Confer chat.

1. It would retweet with a comment
2. It would tag the tweet author in a reply

3. It would retweet without adding anything
4. It would find an Error

Importing Modules & Reading Args
The Mancipium Avem Code

from re import finditer, search;
from random import choice, randint;
from time import sleep;
from argparse import ArgumentParser;
import tweepy;

arg_params = [
 ('source', 'specifies the twitter account to read tweets from'),
 ('replies', 'specifies which .txt file to choose replies from'),
 ('comments', 'specifies which .txt file to choose comments from')
];

intro_string = '';

t_parser = ArgumentParser();
for item in arg_params:
 t_parser.add_argument('-{0}'.format(item[0][0]), '--{0}'.format(item[0]), item[1]);
 intro_string += ' | -{0} {1}'.format(item[0][0], item[0]);
t_args = t_parser.parse_args();

print('Welcome to the twitter bot for EH CIS 76.\n{0}}\n'.format(intro_string));

The Mancipium Avem Code

at the start of the source code, we
import the required modules.

we use argparse.ArgumentParser to
define our flag parsings (which
allows us to specify variables at
run-time).

the for loop assigns the flag
parsings based on arg_params.

Core Class & Setup Functions
The Mancipium Avem Code

class create_core():
 def __init__(self, tweepy, t_args):

 self.consumer_key = 'CONSUMER_KEY_HERE';
 self.consumer_secret = ‘CONSUMER_SECRET_HERE’;
 self.access_token = ‘ACCESS_TOKEN_HERE’;
 self.access_secret = ‘ACESS_SECRET_HERE’;

 self.seconds_before_input = 10;

 self.first_authentication_protocol = tweepy.OAuthHandler(self.consumer_key, self.consumer_secret);
 self.first_authentication_protocol.set_access_token(self.access_token, self.access_secret);
 self.API_access = tweepy.API(self.first_authentication_protocol);

 # empty __init__ variables
 self.latest_tweets = [];
 self.check_keywords = {};
 self.keywords_found = {};
 self.recent_tweets = {};
 self.listening_to = None;
 self.comments = None;
 self.replies = None;

 …

The Mancipium Avem Code

here, we create the primary class,
attributing related variables.

if you run the bot, you’ll edit the
consumer/access key variables.

API_access uses the tweepy module
to authenticate and create the
object that will interface with the
twitter account.

class create_core():
 def __init__(self, tweepy, t_args):
 …

 self.arg_list = { # modify these to change the defaults, or add new options
 'replies':(self.replies, t_args.replies, 'random-replies.txt'),
 'comments':(self.comments, t_args.comments, 'nine-bakers-dozen.txt'),
 'source':(self.listening_to, t_args.source, 'EH_EinsZahl')
 };

 self.listening_to = self.try_except(self.argument_formatting, 'source');
 self.comments = self.try_except(self.argument_formatting, 'comments');
 self.nine_bakers_dozen = open(self.comments, 'r').read().split('\n')[:-1];
 self.replies = self.try_except(self.argument_formatting, 'replies');
 self.random_replies = open(self.replies, 'r').read().split('\n')[:-1];
 self.recent_tweets = self.try_except(self.file_formatting, 'recent-tweets.txt');
 self.watch_words = self.try_except(self.file_formatting, 'watch-words.txt');

 self.command_list = { # this is the list of commands and passed string
 'reply':(self.random_replies, '__SOURCE__ __REPLY CHOICE__'),
 'comment':(self.nine_bakers_dozen, '__REPLY CHOICE__ __TWEET LINK__'),
 'retweet':(None, '__TWEET__'),
 };

The Mancipium Avem Code

def __init__ (as also seen in the
previous slide) tells the class
what variables to create and what
code to run when the class is first
called.

self.command_list is a dictionary
of commands that the bot
understands, as well as the format
of the response it gives.

class create_core():
 ...

 def argument_formatting(self, string_arg):
 # using the dict above, uses the default arg unless an arg is specified.
 if not self.arg_list[string_arg][1]:
 self.arg_list[string_arg][0] = self.arg_list[string_arg][2];
 else:
 self.arg_list[string_arg][0] = self.arg_list[string_arg][1];
 return(self.arg_list[string_arg][0]);

 def file_formatting(self, file_choice):
 # creates a dict from files with a 'key:value' syntax per line
 temp_file = open(file_choice, 'r').read().split('\n')[:-1];
 temp_file = [(i.split(':')[0], i.split(':')[1]) for i in temp_file];
 temp_file = { key:value for (key, value) in temp_file };
 return(temp_file);

The Mancipium Avem Code

still within the primary class, we
now create functions that the class
object can call.

file_formating(file_choice) takes a
file with 'key:value' per line, and
creates a dictionary from those
key:values. it then returns that
dictionary to the variable
assignment that called it.

Too fast? Use the “slower” Confer emotion!

Core Class & Twitter Functions
The Mancipium Avem Code

class create_core():
 ...

 def is_tweetable(self, tweet_checking):
 # determines if a message is tweetable
 link_finding_regex =
r'(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)';
 links_found = finditer(link_finding_regex, tweet_checking);
 for current_link in links_found:
 # twitter replaces all links with a t.co shortened URL that is 23 characters long
 tweet_checking = tweet_checking.replace(str(current_link.group(0)), 'twenty three characters');
 if len(tweet_checking) <= 280: # twitter now allows tweets up to 280 characters long
 return(True);
 return(False);

 def listen_to_source(self):
 # grabs the latest (20?) tweets from the sources timeline and creates an ID:Tweet dictionary
 self.latest_tweets = self.API_access.user_timeline(self.listening_to);
 self.latest_tweets = [(i.id, i.text) for i in self.latest_tweets];
 self.latest_tweets = { str(key):value for (key, value) in self.latest_tweets };
 return(True);

The Mancipium Avem Code

the is_tweetable(tweet) function
calls a regex search using the
finditer function from the re
(regex) module.

twitter replaces all links with a
t.co link of 23 characters.

it then determines if the updated
tweet is short enough to send.

class create_core():
 ...

 def find_new_tweets(self):
 # locates tweets that haven't been seen before (ID does not exist in recent-tweets.txt)
 for t_id in [l_id for l_id in self.latest_tweets]:
 if t_id not in [r_id for r_id in self.recent_tweets]:
 self.check_keywords[t_id] = self.latest_tweets[t_id];
 if len(self.check_keywords) < 1:
 return(False);
 return(True);

 def check_for_keywords(self):
 # scans new tweets for any relevant regex keywords
 for tweet in self.check_keywords:
 for keyword in self.watch_words:
 if search(keyword, self.check_keywords[tweet]):
 self.keywords_found[tweet] = (self.check_keywords[tweet], self.watch_words[keyword]);
 self.recent_tweets[tweet] = self.check_keywords[tweet];
 if len(self.keywords_found) < 1:
 return(False);
 return(True);

The Mancipium Avem Code

find_new_tweets searches for any
tweet not already in the
recent-tweets.txt file.

once those are found (if any),
check_for_keywords uses regex to
check if any of the new tweets
contain keywords that will cause
the bot to run commands (such as
retweeting, commenting, etc.)

Too fast? Use the “slower” Confer emotion!

Core Class & Controller Functions
The Mancipium Avem Code

class create_core():
 ...

 def try_except(self, function, args=None):
 # general error handling, all functions are run through this
 try:
 if not args:
 return(function());
 else:
 return(function(args));
 except Exception as e:
 print('[DEBUG ACTIVE] Returning False in {0} to keep things running, but {1}' .format(function.__name__, e));
 return(False);

 def run_command(self, t_id):
 # determines which command to run, based on which keywords were found.
 tweet_command = self.keywords_found[t_id][1];
 tweet_message = self.keywords_found[t_id][0];
 if not self.command_list[tweet_command][0]:
 reply_choice = 'None'; # slide 37
 else:
 reply_choice = choice([reply for reply in self.command_list[tweet_command][0]]);

 …

The Mancipium Avem Code

try_except is the error handling
function of our class.

all other functions are ran through
try_except, and if an error occurs
it is printed locally.

the code then continues to run
smoothly until finishing.

class create_core():
 ...
 def run_command(self, t_id):
 …

 command_syntax = {
 '__SOURCE__':self.listening_to,
 '__REPLY CHOICE__':reply_choice,
 '__TWEET__':tweet_message,
 '__TWEET LINK__':'https://twitter.com/{0}/status/{1}'.format(self.listening_to[1:], t_id),

 };
 formatted_message = self.command_list[tweet_command][1];
 if tweet_command in self.command_list:
 for syntax in command_syntax:
 formatted_message = formatted_message.replace(syntax, command_syntax[syntax]);
 if self.try_except(self.is_tweetable, formatted_message):
 self.API_access.update_status(formatted_message);
 print('[TWEET SENT] I tweeted "{0}"'.format(formatted_message));
 else: print('[TWEET FAILED] I could not send that tweet.');
 else:
 print('[DEBUG ACTIVE] I received a command that I am not coded for yet.')
 return(False);
 return(True);

The Mancipium Avem Code

run_command (as started on the previous slide) double checks
the command and then parses the reply using the command_list
dictionary from slide 30.

then, it runs is_tweetable, verifying that the newly
formated tweet is still under the maximum allowed length.

finally, it updates the account status with the tweet.

Class Creation & Program Life Cycle
The Mancipium Avem Code

twitter_bug = create_core(tweepy, t_args);

if len(twitter_bug.watch_words) >= 15: print('[DEBUG NOTE] Too many keywords may slow me down!\n');

twitter_bug.try_except(twitter_bug.listen_to_source);

if twitter_bug.try_except(twitter_bug.find_new_tweets):
 twitter_bug.try_except(twitter_bug.check_for_keywords);
 current_counter = len(twitter_bug.keywords_found);
 for t_id in twitter_bug.keywords_found:

 twitter_bug.try_except(twitter_bug.run_command, t_id);

 if current_counter > 1: # if this isn't the last (or only) event, it sleeps for a bit
 sleep(twitter_bug.seconds_before_input);
 current_counter -= 1;

 recent_tweets_write = open('recent-tweets.txt', 'w');
 for t_id in twitter_bug.recent_tweets:
 recent_tweets_write.write('{0}:{1}\n'.format(t_id, twitter_bug.recent_tweets[t_id]));
 recent_tweets_write.close();
else: print('[DEBUG ACTIVE] No new tweets found.');

print('Thanks for running me! I am going to quit now, but run me again anytime you want to check for new tweets.');

The Mancipium Avem Code

outside of the class object, this
is the code that runs the entire
program. first, twitter_bug becomes
the core class. it then uses
listen_to_source to check for
tweets and find_new_tweets to
isolate the new ones.

after finding keywords and running
commands, it performs clean-up.

Too fast? Use the “slower” Confer emotion!

Quick Activity Slide
Raise your e-hand in Confer if you’re interested in making your own Twitter bot!

(Possibly for part of your final project?)

Nefarious Ethical Implementation

Ready to set up your own Twitter Bot?

1. Browse to https://twitter.com/signup and create a new account

2. https://support.twitter.com/articles/110250 - Add your number to the account

3. While logged in, browse to https://apps.twitter.com/ and hit ‘Create New App’

4. Fill out the form and hit ‘Create your Twitter application’

5. Browse to your App and click on ‘Keys and Access Tokens’

6. If all four tokens aren’t there, hit ‘Generate My Access Token and Token Secret’

Nefarious Ethical Implementation

https://twitter.com/signup
https://support.twitter.com/articles/110250
https://apps.twitter.com/

Ready to set up your own Twitter Bot?

1. From your home directory run cp -r /home/cis76/depot/twitter-bot/ .

2. Then, cd twitter-bot/avem-source

3. Run vim twitter.py and edit lines 33 - 36 with your own Access Tokens

4. Run the following command from inside the bot’s directory to launch!
 python3 twitter.py [-s source] [-r replies_file.txt] [-c comments_file.txt]

Nefarious Ethical Implementation

Questions & Answers

Thanks for your time!

